论文标题
电化学对非电化学系统建模:钯催化剂上的过氧化氢直接合成
electrochemically modeling a non-electrochemical system: hydrogen peroxide direct synthesis on palladium catalysts
论文作者
论文摘要
在环境条件下,非电化学过氧化氢直接合成(HPD)是一种环境良性和节能的过程,可产生绿色氧化剂。尽管具有工业意义,但HPD的反应机制即使对于原型催化剂PD,HPD的反应机制仍然存在争议。密度功能理论(DFT)计算,对熵和溶剂化效应进行了全面考虑,表明传统接受的Langmuir-hinshelwood机制无法解释为什么H2O2生产在H2O生产上占主导地位,这是在实验上报告的。灵感来自最近建议的杂种机制,该机制涉及电子和PD催化剂的质子转移,我们提出了一种新的电化学DFT模型,该模型适用于质子化本质上发生的非电化学系统。我们的模型基于将管家方程和恒定电势DFT与混合显式溶剂治疗相结合。将该模型应用于PD(111)表面,可以准确描述H2O2和H2O产生的激活屏障(在实验测量值的〜0.1 eV中)。与非电化学氢化步骤相比,杂液机理的H2O2生产的质子化步骤具有较低的障碍,从而导致H2O2生产的有利动力学在H2O生产中产生。这项工作是支持杂种H2O2生产机制的第一项理论和计算研究,它解决了以前的实验结果和DFT结果之间未解决的差异。我们预计这些结果将很容易帮助系统地开发H2O2合成的催化剂。
Nonelectrochemical hydrogen peroxide direct synthesis (HPDS) under ambient conditions is an environmentally benign and energy-efficient process that produces a green oxidizer. Despite its industrial importance, the reaction mechanism of HPDS is still controversial, even for the prototypical catalyst Pd. Density functional theory (DFT) calculations with a comprehensive consideration of entropic and solvation effects reveal that the conventionally accepted Langmuir-Hinshelwood mechanism fails to explain why H2O2 production dominates over H2O production, which was experimentally reported. Inspired by the recently suggested heterolytic mechanism that involves electron and proton transfer at Pd catalysts, we propose a new electrochemical DFT model that is applicable for nonelectrochemical systems where a protonation intrinsically occurs. Our model is based on combining the Butler-Volmer equation and constant potential DFT with hybrid explicit-implicit solvent treatments. Application of this model to Pd(111) surfaces produces accurate descriptions of the activation barriers of both H2O2 and H2O production (within only ~0.1 eV of experimentally measured values). The heterolytic mechanism has a lower barrier for the protonation steps for H2O2 production than the nonelectrochemical hydrogenation steps, leading to advantageous kinetics for H2O2 production over H2O production. This work is the first theoretical and computational study supporting the heterolytic H2O2 production mechanism, and it resolves the unanswered discrepancies between previous experimental and DFT results. We expect that these results will readily help the systematic development of improved catalysts for H2O2 synthesis.