论文标题
双重Gromov-Hausdorff Propinquity对对称性保存的调查
A survey of the Preservation of Symmetries by the Dual Gromov-Hausdorff Propinquity
论文作者
论文摘要
我们调查在自然的非偏差和等准条件下,对双重倾向的对称性保留特性。当对称性通过适当的单体和组的作用编码时,最好使用协变量的概念来制定这些特性。我们探讨了凯奇序列的融合问题,即协变量,该序列通过紧凑的结果捕获了适当的单体动作可以传递到双重propinquity的极限的事实。
We survey the symmetry preserving properties for the dual propinquity, under natural non-degeneracy and equicontinuity conditions. These properties are best formulated using the notion of the covariant propinquity when the symmetries are encoded via the actions of proper monoids and groups. We explore the issue of convergence of Cauchy sequences for the covariant propinquity, which captures, via a compactness result, the fact that proper monoid actions can pass to the limit for the dual propinquity.