论文标题

随机预测和尺寸降低

Random Projections and Dimension Reduction

论文作者

Advani, Rishi, Crim, Madison, O'Hagan, Sean

论文摘要

从广义上讲,本文涵盖了在两个主要领域中随机性的使用:低级别近似和内核方法。 在数值线性代数中,低级别近似非常重要。许多应用程序取决于矩阵分解算法,这些算法提供了准确的数据的低级别表示。但是,在现代问题中,各种因素使这很难实现。解决这些问题的一种解决方案是使用随机预测。我们没有直接计算矩阵分解,而是将矩阵随机投影到较低维的子空间上,然后计算分解。通常,我们能够做到这一点而不会大幅损失准确性。我们描述了如何使用随机化来创建更有效的算法来执行低级别矩阵近似,并引入了一种用于基质分解的新型随机算法。与标准方法相比,随机算法通常更快,更健壮。使用这些随机算法,分析大量数据集变得可以拖延。 内核方法几乎与低级别近似值完全相反。这个想法是将低维数据投影到更高维的“特征空间”中,以便在特征空间中可分离它。这使模型能够学习数据的非线性分离。与以前一样,使用大数据矩阵,计算内核矩阵可能很昂贵,因此我们使用随机方法来近似矩阵。此外,我们提出了随机傅立叶特征内核的扩展,其中超参数值是从间隔或borel集合中随机采样的。 本文讨论的实验可以在我们的网站https://rishi1999999.github.io/random-projections上找到。

This paper, broadly speaking, covers the use of randomness in two main areas: low-rank approximation and kernel methods. Low-rank approximation is very important in numerical linear algebra. Many applications depend on matrix decomposition algorithms that provide accurate low-rank representations of data. In modern problems, however, various factors make this hard to accomplish. One solution to these problems is the use of random projections. Instead of directly computing the matrix factorization, we randomly project the matrix onto a lower-dimensional subspace and then compute the factorization. Often, we are able to do this without significant loss of accuracy. We describe how randomization can be used to create more efficient algorithms to perform low-rank matrix approximation, as well as introducing a novel randomized algorithm for matrix decomposition. Compared to standard approaches, random algorithms are often faster and more robust. With these randomized algorithms, analyzing massive data sets becomes tractable. Kernel methods are almost diametrically opposite from low-rank approximation. The idea is to project low-dimensional data into a higher-dimensional 'feature space,' such that it is linear separable in the feature space. This enables the model to learn a nonlinear separation of the data. As before, with large data matrices, computing the kernel matrix can be expensive, so we use randomized methods to approximate the matrix. In addition, we propose an extension of the random Fourier features kernel in which hyperparameter values are randomly sampled from an interval or Borel set. The experiments discussed in this paper can be found on our website at https://rishi1999.github.io/random-projections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源