论文标题

梦想:社会推荐的动态关系感知模型

DREAM: A Dynamic Relational-Aware Model for Social Recommendation

论文作者

Song, Liqiang, Bi, Ye, Yao, Mengqiu, Wu, Zhenyu, Wang, Jianming, Xiao, Jing

论文摘要

社交联系在改善推荐系统(RS)的性能中起着至关重要的作用。但是,将社会信息纳入RS是具有挑战性的。大多数现有的模型通常在给定的会议中考虑社交影响,而忽略了用户的偏好及其朋友的影响正在发展。而且,在现实世界中,社会关系很少。建模动态影响并减轻数据稀疏性至关重要。在本文中,我们提出了一个名为“动态关系意识模型”的统一框架以进行社交推荐,该模型试图对用户的动态兴趣及其朋友的时间影响进行建模。具体来说,我们设计了编码模块的时间信息,因为每个会话中都会更新哪些用户表示。更新的用户表示形式转移到关系gat模块中,随后影响社交网络的操作。在每个会话中,为了解决社会关系稀疏性,我们利用基于手套的方法与虚拟朋友完成社交网络。然后,我们在完成的社交网络上采用关系gat模块来更新用户表示。在公共数据集的广泛实验中,梦想极大地胜过最先进的解决方案。

Social connections play a vital role in improving the performance of recommendation systems (RS). However, incorporating social information into RS is challenging. Most existing models usually consider social influences in a given session, ignoring that both users preferences and their friends influences are evolving. Moreover, in real world, social relations are sparse. Modeling dynamic influences and alleviating data sparsity is of great importance. In this paper, we propose a unified framework named Dynamic RElation Aware Model (DREAM) for social recommendation, which tries to model both users dynamic interests and their friends temporal influences. Specifically, we design temporal information encoding modules, because of which user representations are updated in each session. The updated user representations are transferred to relational-GAT modules, subsequently influence the operations on social networks. In each session, to solve social relation sparsity, we utilize glove-based method to complete social network with virtual friends. Then we employ relational-GAT module over completed social networks to update users representations. In the extensive experiments on the public datasets, DREAM significantly outperforms the state-of-the-art solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源