论文标题
线性苯烯的舒尔茨不变的基础多项式
Base Polynomials for Schultz Invariants of Linear Phenylenes
论文作者
论文摘要
令$ l_ {n} $为线性$ [n] $苯基的分子图,而$ l'_ _ {n} $通过将4元周期连接到$ l_ {n-1} $的终端Hexagons获得的图获得。因此,$ l'_ {n} $是$ [n-1] $苯乙烯的$α,ω$ - ω$ - ω$ -DycyClobutadieno衍生物的分子图,其中包含$ n-1 $ hexagons和$ n $ squares。在本文中,我们给出多项式,这些多项式是舒尔茨不变的基础。实际上,我们代表$ l_ {n} $和$ l'_ {n} $的$ l_ {n} $ 2-2、2-3和3-3之间的路径长度。
Let $L_{n}$ be the molecular graph of linear $[n]$phenylene, and $L'_{n}$ the graph obtained by attaching 4-membered cycles to terminal hexagons of $L_{n-1}$. Thus, $L'_{n}$ is the molecular graph of the $α,ω$ - dicyclobutadieno derivative of $[n-1]$phenylene, containing $n-1$ hexagons and $n$ squares. In this paper we give polynomials which serve as bases for Schultz invariants. Actually, we represent lengths of paths among vertices of degrees 2-2, 2-3, and 3-3 of $L_{n}$ and $L'_{n}$ in terms of polynomials, which are used to find Schultz polynomial, modified Schultz polynomial, Schultz index, and modified Schultz index.