论文标题

campus3d:摄影测量点云基准测试,用于室外场景的分层理解

Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical Understanding of Outdoor Scene

论文作者

Li, Xinke, Li, Chongshou, Tong, Zekun, Lim, Andrew, Yuan, Junsong, Wu, Yuwei, Tang, Jing, Huang, Raymond

论文摘要

基于3D场景的Point Cloud在许多领域中获得了广泛的关注,并且被宣布良好的多源数据集可以催化这些数据驱动的方法的开发。为了促进对该领域的研究,我们提出了一个丰富的3D点云数据集,用于多个室外场景理解任务,也是其层次分割任务的有效学习框架。该数据集是通过新加坡国立大学(NUS)校园的无人机(UAV)图像上的摄影测量处理生成的,并已用基于层次结构和基于实例的标签进行了点注释。基于它,我们为3D点云分割制定了一个层次学习问题,并提出了评估各个层次结构一致性的测量。为了解决这个问题,提出了一种两阶段的方法,包括多任务(MT)学习和分层集合(HE),并提出了一致性的考虑。实验结果证明了所提出的方法的优势以及我们的层次注释的潜在优势。此外,我们基于语义和实例细分的基准结果,该结果可在https://3d.dataset.site上在线访问,并带有数据集和所有源代码。

Learning on 3D scene-based point cloud has received extensive attention as its promising application in many fields, and well-annotated and multisource datasets can catalyze the development of those data-driven approaches. To facilitate the research of this area, we present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks and also an effective learning framework for its hierarchical segmentation task. The dataset was generated via the photogrammetric processing on unmanned aerial vehicle (UAV) images of the National University of Singapore (NUS) campus, and has been point-wisely annotated with both hierarchical and instance-based labels. Based on it, we formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies. To solve this problem, a two-stage method including multi-task (MT) learning and hierarchical ensemble (HE) with consistency consideration is proposed. Experimental results demonstrate the superiority of the proposed method and potential advantages of our hierarchical annotations. In addition, we benchmark results of semantic and instance segmentation, which is accessible online at https://3d.dataset.site with the dataset and all source codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源