论文标题
用单晶铝的深色场X射线显微镜时间量化错位行为的方法
Methods to Quantify Dislocation Behavior with Dark-field X-ray Microscopy Timescans of Single-Crystal Aluminum
论文作者
论文摘要
晶体缺陷在材料对周围环境的反应方式中起着重要作用,但是在材料表面下方深处的延伸缺陷,移动和相互作用中存在许多不确定性。现在,新开发的成像诊断,深色场X射线显微镜(DFXM)可以在不同条件下的材料中可视化线缺陷(称为位错)的行为。 DFXM图像通过对材料晶体晶格中非常微妙的远距离失真进行成像,从而可视化位错,从而产生了一对特征性的相邻对面的明亮和深色区域。但是,对这些位错的演变如何用于完整的分析可用于完善材料模型,但是,它需要对其形状,位置和运动的统计数据进行定量表征。在本文中,我们提出了一种半自动化的方法,可以有效地隔离,跟踪和量化位错的行为作为复合对象。例如,该分析驱动缺陷的统计表征,例如在晶体中包括位错速度和方向,并在测量在欧洲同步器辐射设备上的单晶铝的熔融温度的98 $ \%熔化温度的熔化温度的熔融温度的演示中进行了证明。
Crystal defects play a large role in how materials respond to their surroundings, yet there are many uncertainties in how extended defects form, move, and interact deep beneath a material's surface. A newly developed imaging diagnostic, dark-field X-ray microscopy (DFXM) can now visualize the behavior of line defects, known as dislocations, in materials under varying conditions. DFXM images visualize dislocations by imaging the very subtle long-range distortions in the material's crystal lattice, which produce a characteristic adjoined pair of bright and dark regions. Full analysis of how these dislocations evolve can be used to refine material models, however, it requires quantitative characterization of the statistics of their shape, position and motion. In this paper, we present a semi-automated approach to effectively isolate, track, and quantify the behavior of dislocations as composite objects. This analysis drives the statistical characterization of the defects, to include dislocation velocity and orientation in the crystal, for example, and is demonstrated on DFXM images measuring the evolution of defects at 98$\%$ of the melting temperature for single-crystal aluminum, collected at the European Synchrotron Radiation Facility.