论文标题
面部表情从人类到阿凡达的重新定位变得容易
Facial Expression Retargeting from Human to Avatar Made Easy
论文作者
论文摘要
面部表达从人类到虚拟字符重新定位是计算机图形和动画中的有用技术。传统方法使用标记或搅拌形状来构建人体和头像面之间的映射。但是,这些方法需要一个乏味的3D建模过程,并且性能取决于建模者的经验。在本文中,我们通过非线性表达嵌入和表达域的翻译提出了这个跨域表达转移问题的全新解决方案。我们首先使用各种自动编码器为人类和头像面部表情建造低维的潜在空间。然后,我们在两个潜在空间之间构建对应关系,这些潜在空间由几何和感知约束引导。具体而言,我们设计了几何对应关系,以反映几何匹配并利用三重态数据结构来表达用户对化身表达式的感知偏好。提出了一种用户友好的方法,可以自动为系统生成三重态,允许用户轻松有效地注释通信。使用几何和感知对应关系,我们训练了一个网络,用于从人类到头像的表达域翻译。广泛的实验结果和用户研究表明,即使是非专业用户也可以应用我们的方法来生成高质量的面部表达重新定位结果,并以更少的时间和精力来生成。
Facial expression retargeting from humans to virtual characters is a useful technique in computer graphics and animation. Traditional methods use markers or blendshapes to construct a mapping between the human and avatar faces. However, these approaches require a tedious 3D modeling process, and the performance relies on the modelers' experience. In this paper, we propose a brand-new solution to this cross-domain expression transfer problem via nonlinear expression embedding and expression domain translation. We first build low-dimensional latent spaces for the human and avatar facial expressions with variational autoencoder. Then we construct correspondences between the two latent spaces guided by geometric and perceptual constraints. Specifically, we design geometric correspondences to reflect geometric matching and utilize a triplet data structure to express users' perceptual preference of avatar expressions. A user-friendly method is proposed to automatically generate triplets for a system allowing users to easily and efficiently annotate the correspondences. Using both geometric and perceptual correspondences, we trained a network for expression domain translation from human to avatar. Extensive experimental results and user studies demonstrate that even nonprofessional users can apply our method to generate high-quality facial expression retargeting results with less time and effort.