论文标题
基于频繁序列的度量模型的顺序推荐
Sequential recommendation with metric models based on frequent sequences
论文作者
论文摘要
建模用户偏好(长期历史记录)和用户动态(短期历史记录)对于构建有效的顺序推荐系统至关重要。挑战在于整个用户历史的成功结合以及他最近的动态(顺序动态)提供了个性化的建议。现有方法使用固定顺序马尔可夫链(通常是一阶链)捕获用户的顺序动态,而不管用户如何,这限制了用户对建议的过去的影响,以及将其长度调整到用户配置文件中的能力。在本文中,我们建议使用频繁的序列来确定用户历史记录中最相关的部分以进行推荐。然后,最突出的项目随后在统一的度量模型中使用,该模型根据用户的偏好和顺序动态嵌入项目。广泛的实验表明,我们的方法的表现优于最先进的实验,尤其是在稀疏数据集上。我们表明,考虑不同长度的序列可以改善建议,我们还强调,这些序列提供了有关建议的解释。
Modeling user preferences (long-term history) and user dynamics (short-term history) is of greatest importance to build efficient sequential recommender systems. The challenge lies in the successful combination of the whole user's history and his recent actions (sequential dynamics) to provide personalized recommendations. Existing methods capture the sequential dynamics of a user using fixed-order Markov chains (usually first order chains) regardless of the user, which limits both the impact of the past of the user on the recommendation and the ability to adapt its length to the user profile. In this article, we propose to use frequent sequences to identify the most relevant part of the user history for the recommendation. The most salient items are then used in a unified metric model that embeds items based on user preferences and sequential dynamics. Extensive experiments demonstrate that our method outperforms state-of-the-art, especially on sparse datasets. We show that considering sequences of varying lengths improves the recommendations and we also emphasize that these sequences provide explanations on the recommendation.