论文标题

机器学习物理系统熵的迭代计算

Machine-learning Iterative Calculation of Entropy for Physical Systems

论文作者

Nir, Amit, Sela, Eran, Beck, Roy, Bar-Sinai, Yohai

论文摘要

表征系统的熵是一种至关重要的,通常在计算上是昂贵的,在理解其热力学方面的一步。它在研究相变,模式形成,蛋白质折叠等方面起着关键作用。当前的熵估计方法遭受高计算成本,缺乏通用性或不准确性以及无法治疗复杂,牢固相互作用的系统的方法。在本文中,我们提出了一种称为小鼠的新方法,用于通过将系统划分为较小的子系统并估算每对半半之间的相互信息来计算熵。估计是通过最近提出的机器学习算法进行的,该算法可与任意网络体系结构一起使用,可以选择该算法,以适合当前系统的结构和对称性。我们表明,我们的方法可以以最先进的精度来计算各种系统的熵。具体而言,我们研究了各种经典的自旋系统,并确定软盘的二分散混合物的干扰点。最后,我们建议,除了其在估计熵中的作用外,共同信息本身还可以在物理系统研究中提供有见地的诊断工具。

Characterizing the entropy of a system is a crucial, and often computationally costly, step in understanding its thermodynamics. It plays a key role in the study of phase transitions, pattern formation, protein folding and more. Current methods for entropy estimation suffer either from a high computational cost, lack of generality or inaccuracy, and inability to treat complex, strongly interacting systems. In this paper, we present a novel method, termed MICE, for calculating the entropy by iteratively dividing the system into smaller subsystems and estimating the mutual information between each pair of halves. The estimation is performed with a recently proposed machine learning algorithm which works with arbitrary network architectures that can be chosen to fit the structure and symmetries of the system at hand. We show that our method can calculate the entropy of various systems, both thermal and athermal, with state-of-the-art accuracy. Specifically, we study various classical spin systems, and identify the jamming point of a bidisperse mixture of soft disks. Lastly, we suggest that besides its role in estimating the entropy, the mutual information itself can provide an insightful diagnostic tool in the study of physical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源