论文标题

LorentzianCalderón问题在曲率范围

Lorentzian Calderón problem under curvature bounds

论文作者

Alexakis, Spyros, Feizmohammadi, Ali, Oksanen, Lauri

论文摘要

我们引入了一种解决Lorentzian歧管上波方程的逆边界值问题的方法,并表明可以在某些曲率边界下恢复零阶系数。在任意,平稳的扰动意义上,满足曲率界限的洛伦兹指标的集合具有非空的内部装饰,而对此问题的所有先前结果都对指标施加了条件,该指标将其迫使其对适当定义的时间变量进行真实的分析。 Riemannian歧管上的类似问题称为Calderón问题,在这种情况下,已知结果要求度量与一个变量之一独立。我们的方法是基于从某个点发出的双重空锥外部的新独特的延续结果。该方法与经典边界控制方法共享特征,可以将此方法视为对不假定实际分析性的情况的概括。

We introduce a method of solving inverse boundary value problems for wave equations on Lorentzian manifolds, and show that zeroth order coefficients can be recovered under certain curvature bounds. The set of Lorentzian metrics satisfying the curvature bounds has a non-empty interior in the sense of arbitrary, smooth perturbations of the metric, whereas all previous results on this problem impose conditions on the metric that force it to be real analytic with respect to a suitably defined time variable. The analogous problem on Riemannian manifolds is called the Calderón problem, and in this case the known results require the metric to be independent of one of the variables. Our approach is based on a new unique continuation result in the exterior of the double null cone emanating from a point. The approach shares features with the classical Boundary Control method, and can be viewed as a generalization of this method to cases where no real analyticity is assumed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源