论文标题

解剖学意识心脏运动估计

Anatomy-Aware Cardiac Motion Estimation

论文作者

Chen, Pingjun, Chen, Xiao, Chen, Eric Z., Yu, Hanchao, Chen, Terrence, Sun, Shanhui

论文摘要

心脏运动估计对于评估心脏功能至关重要。心肌特征跟踪(FT)可以直接从Cine MRI估计心脏运动,这不需要特殊的扫描程序。但是,当前基于深度学习的FT方法可能导致不切实际的心肌形状,因为学习仅由图像强度指导而不考虑解剖结构。另一方面,通过学习的运动估计是具有挑战性的,因为几乎无法获得地面真相运动场。在这项研究中,我们提出了一种新型的解剖学感知跟踪器(AATRACKER),以进行心脏运动估计,以通过弱监督来保留解剖学。卷积变分自动编码器(VAE)经过训练以封装逼真的心肌形状。对基线密集的运动跟踪器进行了训练,以近似运动场,然后进行完善以估计VAE弱监督下的解剖学感知运动场。我们评估了关于长轴心脏Cine MRI的提议方法,该方法比短轴具有更复杂的心肌外观和运动。与其他方法相比,Aatracker显着改善了跟踪性能,并提供了更现实的跟踪结果,这证明了在心脏运动估计中提出的弱点方案的有效性。

Cardiac motion estimation is critical to the assessment of cardiac function. Myocardium feature tracking (FT) can directly estimate cardiac motion from cine MRI, which requires no special scanning procedure. However, current deep learning-based FT methods may result in unrealistic myocardium shapes since the learning is solely guided by image intensities without considering anatomy. On the other hand, motion estimation through learning is challenging because ground-truth motion fields are almost impossible to obtain. In this study, we propose a novel Anatomy-Aware Tracker (AATracker) for cardiac motion estimation that preserves anatomy by weak supervision. A convolutional variational autoencoder (VAE) is trained to encapsulate realistic myocardium shapes. A baseline dense motion tracker is trained to approximate the motion fields and then refined to estimate anatomy-aware motion fields under the weak supervision from the VAE. We evaluate the proposed method on long-axis cardiac cine MRI, which has more complex myocardium appearances and motions than short-axis. Compared with other methods, AATracker significantly improves the tracking performance and provides visually more realistic tracking results, demonstrating the effectiveness of the proposed weakly-supervision scheme in cardiac motion estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源