论文标题
雅各比矩阵的光谱理论在树上的系数是由多个正交性产生的
Spectral theory of Jacobi matrices on trees whose coefficients are generated by multiple orthogonality
论文作者
论文摘要
我们研究了雅各比矩阵的树木,其系数是由多个正交多项式产生的。获得了希尔伯特空间分解为循环子空间的正交总和。对于每个子空间,我们发现生成器和按正交多项式编写的广义本征函数。研究了针对大类正交性测量的光谱及其光谱类型。
We study Jacobi matrices on trees whose coefficients are generated by multiple orthogonal polynomials. Hilbert space decomposition into an orthogonal sum of cyclic subspaces is obtained. For each subspace, we find generators and the generalized eigenfunctions written in terms of the orthogonal polynomials. The spectrum and its spectral type are studied for large classes of orthogonality measures.