论文标题
中微子磁矩和较大的额外尺寸消除了中微子恒星的演变中蓝色环
Elimination of the Blue Loops in the Evolution of Intermediate-mass Stars by the Neutrino Magnetic Moment and Large Extra Dimensions
论文作者
论文摘要
为了超越标准模型物理,恒星是补充陆地实验的实验室。粒子物理标准模型中的无质量中微子不能具有磁矩,但是在标准模型的最小扩展中,大量中微子具有有限的磁矩。较大的额外维度是层次结构问题的可能解决方案。这两者都通过电磁相互作用和辐射分别为额外的维度提供了恒星内部的额外能量损失通道,从而影响了恒星的演化。我们以这种额外的能量损失进行了恒星进化的模拟,发现它们消除了中间质量恒星进化中的蓝色环。头恒星的存在可用于限制中微子磁矩和较大的额外尺寸。为了使头孢虫存在,中微子磁矩应小于〜2x10^{ - 10}到4x10^{ - 11} mu_b的范围,其中mu_b是bohr magneton,并且基本规模应大于(4+2)-SpaceTime-SpaceTime-SpaceTime应大于〜2至5 tev,依靠〜2 tev,依赖于5 tev,根据^tev,cat(al伽玛)^{16} o反应。基本规模也对金属性具有很大的依赖。磁矩的该值在反应堆实验中探索的范围内,但高于球状簇推断的极限。同样,我们约束的基本规模值对应于与扭转平衡实验中探索的尺寸相当的压实维度的大小,但小于对撞机实验和低质量恒星所推论的极限。
For searching beyond Standard Model physics, stars are laboratories which complement terrestrial experiments. Massless neutrinos in the Standard Model of particle physics cannot have a magnetic moment, but massive neutrinos have a finite magnetic moment in the minimal extension of the Standard Model. Large extra dimensions are a possible solution of the hierarchy problem. Both of these provide additional energy loss channels in stellar interiors via the electromagnetic interaction and radiation into extra dimensions, respectively, and thus affect stellar evolution. We perform simulations of stellar evolution with such additional energy losses and find that they eliminate the blue loops in the evolution of intermediate-mass stars. The existence of Cepheid stars can be used to constrain the neutrino magnetic moment and large extra dimensions. In order for Cepheids to exist, the neutrino magnetic moment should be smaller than the range ~2x10^{-10} to 4x10^{-11}mu_B, where mu_B is the Bohr magneton, and the fundamental scale in the (4+2)-spacetime should be larger than ~2 to 5 TeV, depending on the rate of the ^{12}C(alpha, gamma)^{16}O reaction. The fundamental scale also has strong dependence on the metallicity. This value of the magnetic moment is in the range explored in the reactor experiments, but higher than the limit inferred from globular clusters. Similarly the fundamental scale value we constrain corresponds to a size of the compactified dimensions comparable to those explored in the torsion balance experiments, but is smaller than the limits inferred from collider experiments and low-mass stars.