论文标题
量子物质中的新兴颗粒和量规场
Emergent particles and gauge fields in quantum matter
论文作者
论文摘要
我对可能在相关物质中出现的众多粒子和量规场进行了教学介绍。材料的标准模型建立在Landau的基本原理上:绝热连续性和自发对称性破坏。这些想法导致准粒子从基本颗粒,nambu-goldstone玻色子,安德森·希格斯机制和拓扑缺陷中继承其量子数。然后,我描述了超出标准模型的现代物理发现。在这里,量子相关性(纠缠)和拓扑在定义物质特性中起关键作用。这可能导致仅携带定义基本颗粒的量子数的一小部分的分数准颗粒。这些颗粒可以具有外来的特性:例如,主要的植物是其自身的反颗粒,Anyons具有既不是骨气的交换统计量,也不是费米子,并且在真空中不会出现磁单孔。量规场在高度相关物质的描述中自然出现,并可能导致玻色子。讨论了与粒子物理标准模型的关系。
I give a pedagogical introduction to some of the many particles and gauge fields that can emerge in correlated matter. The standard model of materials is built on Landau's foundational principles: adiabatic continuity and spontaneous symmetry breaking. These ideas lead to quasiparticles that inherit their quantum numbers from fundamental particles, Nambu-Goldstone bosons, the Anderson-Higgs mechanism, and topological defects in order parameters. I then describe the modern discovery of physics beyond the standard model. Here, quantum correlations (entanglement) and topology play key roles in defining the properties of matter. This can lead to fractionalised quasiparticles that carry only a fraction of the quantum numbers that define fundamental particles. These particles can have exotic properties: for example Majorana fermions are their own antiparticles, anyons have exchange statistics that are neither bosonic nor fermionic, and magnetic monopoles do not occur in the vacuum. Gauge fields emerge naturally in the description of highly correlated matter and can lead to gauge bosons. Relationships to the standard model of particle physics are discussed.