论文标题

Sobolev Jordan-Schonflies问题

The Sobolev Jordan-Schonflies Problem

论文作者

Koski, Aleksis, Onninen, Jani

论文摘要

我们将平面单元盘$ \ Mathbb D $视为参考配置,而Jordan域$ \ Mathbb Y $是变形的配置,并研究了扩展给定边界同质形态$φ\ colon \ colon \ colon \ colon \ colon \ partial \ pottial \ pottial \ partbb d \ to partial \ partbb to \ partbb y mathbb y $ as s s s osbolev as s s osbolev的问题。在非线性弹性理论(NE)和几何函数理论(GFT)中,研究了经典Jordan-Schönflies定理的这种Sobolev变体的这种sobolev变体的动机。显然,边界映射$φ$接受A $ W^{1,p} $ - SOBOLEV同型扩展的必要条件是,它首先承认连续$ w^{1,p} $ - sobolev扩展。但是,对于任意目标域$ \ mathbb y $,这是不够的。

We consider the planar unit disk $\mathbb D$ as the reference configuration and a Jordan domain $\mathbb Y$ as the deformed configuration, and study the problem of extending a given boundary homeomorphism $φ\colon \partial \mathbb D \to \partial \mathbb Y$ as a Sobolev homeomorphism of the complex plane. Investigating such a Sobolev variant of the classical Jordan-Schönflies theorem is motivated by the well-posedness of the related pure displacement variational questions in the theory of Nonlinear Elasticity (NE) and Geometric Function Theory (GFT). Clearly, the necessary condition for the boundary mapping $φ$ to admit a $W^{1,p}$-Sobolev homeomorphic extension is that it first admits a continuous $W^{1,p}$-Sobolev extension. For an arbitrary target domain $\mathbb Y$ this, however, is not sufficent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源