论文标题

二倍体:二脂肪测试的R软件包

diproperm: An R Package for the DiProPerm Test

论文作者

Allmon, Andrew G., Marron, J. S., Hudgens, Michael G.

论文摘要

在许多生物医学应用中,高维低样本量(HDLSS)数据集经常出现。分析HDLSS数据的常见任务是使用分类器将数据分配给正确的类。使用两个标签和线性组合的分类器称为二进制线性分类器。开发了方向预测性渗透测试(二倍体)测试,用于测试由二进制线性分类器诱导的两个高维分布的差异。本文讨论了二脂膜测试的关键组件,介绍了二倍体R软件包,并在真实世界数据集中演示了软件包。

High-dimensional low sample size (HDLSS) data sets emerge frequently in many biomedical applications. A common task for analyzing HDLSS data is to assign data to the correct class using a classifier. Classifiers which use two labels and a linear combination of features are known as binary linear classifiers. The direction-projection-permutation (DiProPerm) test was developed for testing the difference of two high-dimensional distributions induced by a binary linear classifier. This paper discusses the key components of the DiProPerm test, introduces the diproperm R package, and demonstrates the package on a real-world data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源