论文标题

量子隧穿的随机方法的定量分析

Quantitative Analysis of the Stochastic Approach to Quantum Tunneling

论文作者

Hertzberg, Mark P., Rompineve, Fabrizio, Shah, Neil

论文摘要

最近,人们对在现场理论中计算量子隧道的替代方法的兴趣越来越大。特别感兴趣的是一种随机方法,涉及(i)从自由理论高斯近似到Wigner分布的采样,以便获得场和动量结合物的随机初始条件,然后(ii)在经典的运动方程下演变,从而导致随机气泡形成。先前的工作表明,在这种随机方法中,隧道速率的对数与通常的插入近似之间的参数一致。但是,最近的工作[1]声称这些方法之间有着极好的一致性。在这里,我们表明这种方法实际上不完全匹配。随机方法倾向于过度预测激体隧道率。为了量化这一点,我们将初始随机波动中的标准偏差分为$εσ$,其中$σ$是高斯分布的实际标准偏差,而$ε$是软糖因子; $ε= 1 $是物理价值。我们在数值上实施了随机方法,以获得1+1维电位的一系列电势的气泡形成率,发现$ε$总是需要比Unity小一些,以抑制否则对Instanton速率的更大的随机率;例如,在[1]的潜力中,需要$ε\大约1/2 $。我们发现,即使在以精确的高斯状态制备初始量子系统时,也会在单个粒子量子力学中进行采样时,也会发生预测的不匹配。如果目标是在两种方法之间达成一致,那么我们的结果表明,如果可以开发指定最佳软糖因子的处方,则随机方法将很有用。

Recently there has been increasing interest in alternate methods to compute quantum tunneling in field theory. Of particular interest is a stochastic approach which involves (i) sampling from the free theory Gaussian approximation to the Wigner distribution in order to obtain stochastic initial conditions for the field and momentum conjugate, then (ii) evolving under the classical field equations of motion, which leads to random bubble formation. Previous work showed parametric agreement between the logarithm of the tunneling rate in this stochastic approach and the usual instanton approximation. However, recent work [1] claimed excellent agreement between these methods. Here we show that this approach does not in fact match precisely; the stochastic method tends to overpredict the instanton tunneling rate. To quantify this, we parameterize the standard deviations in the initial stochastic fluctuations by $εσ$, where $σ$ is the actual standard deviation of the Gaussian distribution and $ε$ is a fudge factor; $ε= 1$ is the physical value. We numerically implement the stochastic approach to obtain the bubble formation rate for a range of potentials in 1+1-dimensions, finding that $ε$ always needs to be somewhat smaller than unity to suppress the otherwise much larger stochastic rates towards the instanton rates; for example, in the potential of [1] one needs $ε\approx 1/2$. We find that a mismatch in predictions also occurs when sampling from other Wigner distributions, and in single particle quantum mechanics even when the initial quantum system is prepared in an exact Gaussian state. If the goal is to obtain agreement between the two methods, our results show that the stochastic approach would be useful if a prescription to specify optimal fudge factors for fluctuations can be developed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源