论文标题
erf cerf理论和扰动$ su(n)$ casson不变性
Equivariant Cerf theory and perturbative $SU(n)$ Casson invariants
论文作者
论文摘要
我们开发了一种具有摩尔斯的摩尔斯的等效性CERF理论,该理论在有限维歧管上发挥了群体作用,并将该技术调整到无限维设置中,以研究扰动的扁平$ su(n)$连接的模量空间。结果,我们证明了全部$ n \ ge 3 $在整数同源性领域上存在扰动$ su(n)$ casson不变的,并在$ n = 4 $时写下明确的公式。这概括了Boden和Herald的先前作品。
We develop an equivariant Cerf theory for Morse functions on finite-dimensional manifolds with group actions, and adapt the technique to the infinite-dimensional setting to study the moduli space of perturbed flat $SU(n)$-connections. As a consequence, we prove the existence of perturbative $SU(n)$ Casson invariants on integer homology spheres for all $n\ge 3$, and write down an explicit formula when $n=4$. This generalizes the previous works of Boden and Herald.