论文标题
具有随机异步规则的有限置信度动力学的准同步
Quasi-synchronization of bounded confidence opinion dynamics with stochastic asynchronous rule
论文作者
论文摘要
最近,Hegselmann-Krause(HK)动力学的噪声诱导的同步理论已经得到很好的发展。作为有限信心的典型意见动态,香港模型遵守同步更新规则,即\ emph {ash asher}代理在每个时间点检查和更新他们的意见。但是,是否尚未证明异步有限的置信模型(包括著名的deffuant-weisbuch(DW)模型)是否可以通过噪声同步。在本文中,我们提出了一个具有随机异步规则的广义有限置信模型。该模型将DW模型和HK模型作为特殊情况,并可以将有限的置信模型显着推广到实际应用。我们发现,与同步HK模型相比,异步模型具有不同的基于噪声的同步行为。通常,在噪声驱动器下,HK动力学可以实现准同步\ emph {几乎可以肯定。对于异步动力学,我们证明该模型可以实现准同步\ emph {in Mane},这是一种新型的准同步类型,而不是“几乎肯定”的感觉。结果统一了噪声诱导的有限置信度意见动力学的同步理论,因此首次证明了噪声诱导的DW模型的同步。此外,结果为制定具有随机异步规则的更复杂的社会意见系统的基于噪声的控制策略提供了理论基础。
Recently the theory of noise-induced synchronization of Hegselmann-Krause (HK) dynamics has been well developed. As a typical opinion dynamics of bounded confidence, the HK model obeys a synchronous updating rule, i.e., \emph{all} agents check and update their opinions at each time point. However, whether asynchronous bounded confidence models, including the famous Deffuant-Weisbuch (DW) model, can be synchronized by noise have not been theoretically proved. In this paper, we propose a generalized bounded confidence model which possesses a stochastic asynchronous rule. The model takes the DW model and the HK model as special cases and can significantly generalize the bounded confidence models to practical application. We discover that the asynchronous model possesses a different noise-based synchronization behavior compared to the synchronous HK model. Generally, the HK dynamics can achieve quasi-synchronization \emph{almost surely} under the drive of noise. For the asynchronous dynamics, we prove that the model can achieve quasi-synchronization \emph{in mean}, which is a new type of quasi-synchronization weaker than the "almost surely" sense. The results unify the theory of noise-induced synchronization of bounded confidence opinion dynamics and hence proves the noise-induced synchronization of DW model theoretically for the first time. Moreover, the results provide a theoretical foundation for developing noise-based control strategy of more complex social opinion systems with stochastic asynchronous rules.