论文标题
路径组合物和颤抖的叶子hecke代数
Path combinatorics and light leaves for quiver Hecke algebras
论文作者
论文摘要
我们在壁cove几何环境中重新阐述了标准tableaux的经典概念,并将这些经典思想扩展到我们几何学中的所有减少路径。这种更广泛的途径对于在Quiver Hecke代数的环境中实施Elias的更高分类思想至关重要。我们的第一个主要结果是Quiver Hecke代数的轻叶底部的建造。这些基础比其经典群体更丰富,并编码更多的结构信息,即使在对称组的情况下也是如此。我们的第二个主要结果为Quiver Hecke代数的Bott-Samelson截断提供了路径理论发生器。
We recast the classical notion of standard tableaux in an alcove-geometric setting and extend these classical ideas to all reduced paths in our geometry. This broader path-perspective is essential for implementing the higher categorical ideas of Elias--Williamson in the setting of quiver Hecke algebras. Our first main result is the construction of light leaves bases of quiver Hecke algebras. These bases are richer and encode more structural information than their classical counterparts, even in the case of the symmetric groups. Our second main result provides path-theoretic generators for the Bott--Samelson truncation of the quiver Hecke algebra.