论文标题

使用gan合成神经元群体的逼真的钙痕迹

Synthesising Realistic Calcium Traces of Neuronal Populations Using GAN

论文作者

Li, Bryan M., Amvrosiadis, Theoklitos, Rochefort, Nathalie, Onken, Arno

论文摘要

钙成像已成为一种强大而流行的技术,可以监测体内大量神经元的活性。然而,对于道德考虑,尽管最近的技术发展,记录仍被限制在有限数量的试验和动物上。这限制了单个实验中可用的数据量,并阻碍了分析技术和模型的开发,以实现更现实的神经元种群。人为地合成现实的神经钙信号的能力可以通过扩大试验数量来大大减轻此问题。在这里,我们提出了一个生成的对抗网络(GAN)模型,以产生具有钙成像的神经元somata中现实的钙信号。为此,我们提出了基于Wavegan结构的模型Calciumgan,并在Wasserstein距离的钙荧光信号上训练它。我们以已知的基础真实性测试了人造数据的模型,并表明生成的信号的分布与基础数据分布非常相似。然后,我们将模型训练模型,这些模型从行为的小鼠的主要视觉皮层中记录下来,并确认反vlovelved尖峰列车与记录数据的统计数据匹配。总之,这些结果表明,我们的模型可以成功生成逼真的钙痕迹,从而提供了增强神经元活动数据集以增强数据探索和建模的方法。

Calcium imaging has become a powerful and popular technique to monitor the activity of large populations of neurons in vivo. However, for ethical considerations and despite recent technical developments, recordings are still constrained to a limited number of trials and animals. This limits the amount of data available from individual experiments and hinders the development of analysis techniques and models for more realistic sizes of neuronal populations. The ability to artificially synthesize realistic neuronal calcium signals could greatly alleviate this problem by scaling up the number of trials. Here, we propose a Generative Adversarial Network (GAN) model to generate realistic calcium signals as seen in neuronal somata with calcium imaging. To this end, we propose CalciumGAN, a model based on the WaveGAN architecture and train it on calcium fluorescent signals with the Wasserstein distance. We test the model on artificial data with known ground-truth and show that the distribution of the generated signals closely resembles the underlying data distribution. Then, we train the model on real calcium traces recorded from the primary visual cortex of behaving mice and confirm that the deconvolved spike trains match the statistics of the recorded data. Together, these results demonstrate that our model can successfully generate realistic calcium traces, thereby providing the means to augment existing datasets of neuronal activity for enhanced data exploration and modelling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源