论文标题
关于torus-Invariant subvareties p(1,1,1,k)平滑爆炸的注释
A note on the smooth blow-ups of P(1,1,1,k) in torus-invariant subvarieties
论文作者
论文摘要
本文为任何积极的整数K分别与单数基因座(1/k(1,1,1)}分类为3倍,以Batyrev和Watanabe-Watanabe的作品为基础。这是通过在Fano多人的语言中完成同等问题来实现的。此外,我们确定了分类条目之间的异性关系。对于固定值k> 4,恰好有两个这样的fano 3倍,与圆环不变的线路中的爆炸相连。
This paper classifies toric Fano 3-folds with singular locus { 1/k(1,1,1) } for any positive integer k, building on the work of Batyrev and Watanabe-Watanabe. This is achieved by completing an equivalent problem in the language of Fano polytopes. Furthermore we identify birational relationships between entries of the classification. For a fixed value k>4, there are exactly two such Fano 3-folds linked by a blow-up in a torus-invariant line.