论文标题
Zarankiewicz半线性超图的问题
Zarankiewicz's problem for semilinear hypergraphs
论文作者
论文摘要
双分图$ h = \ left(v_1,v_2; e \ right)$ with $ | v_1 | + | V_2 | = n $如果$ v_i \ subseteq \ mathbb {r}^{d_i} $对于某些$ d_i $,而边缘关系$ e $由点$(x_1,x_2)组成,则在v_1 \ times v_2 $ in $ y y $ line $ linditive y in $ linditive in y in $ linditive中\ in一些$ S $的变量。我们表明,对于固定的$ k $,$ k_ {k,k} $中的边数 - 免费的半线性$ h $在$ n $中几乎是线性的,即$ | e | = o_ {s,k,\ varepsilon}(n^{1+\ varepsilon})$ for AINY $ \ VAREPSILON> 0 $;更普遍地,$ | e | = o_ {s,k,r,\ varepsilon}(n^{r-1 + \ varepsilon})$对于$ k_ {k,k,\ ldots,k} $ - 免费的semilinear $ r $ r $ r $ r $ -partite $ r $ r $ r $ runiform-sionsribly hypraph。作为一个应用程序,我们获得以下发病率:给定$ n_1 $点和$ n_2 $打开的盒子,轴平行的侧面$ \ mathbb {r}^d $,使得它们的发病率图为$ k_ {k {k {k,k} $ - 免费,最多可以有$ o_ {k,\ varepsilon} $ n^n^n^varep c {k,\ varepsilon} $ c {相同的界限是,如果而不是盒子,则通过任意固定有限的半空间的翻译来切割多面体。在平面上的二元框的情况下,我们还获得了匹配的上限和(超线性)下限,并指出与$ o $ $ $ $ $ - 最小结构中的模型理论三分法的某些连接(表明,几乎线性绑定的几乎线性绑定的失败允许一个定义的图形可以以可确定的方式从该图中从该图中恢复该图形)。
A bipartite graph $H = \left(V_1, V_2; E \right)$ with $|V_1| + |V_2| = n$ is semilinear if $V_i \subseteq \mathbb{R}^{d_i}$ for some $d_i$ and the edge relation $E$ consists of the pairs of points $(x_1, x_2) \in V_1 \times V_2$ satisfying a fixed Boolean combination of $s$ linear equalities and inequalities in $d_1 + d_2$ variables for some $s$. We show that for a fixed $k$, the number of edges in a $K_{k,k}$-free semilinear $H$ is almost linear in $n$, namely $|E| = O_{s,k,\varepsilon}(n^{1+\varepsilon})$ for any $\varepsilon > 0$; and more generally, $|E| = O_{s,k,r,\varepsilon}(n^{r-1 + \varepsilon})$ for a $K_{k, \ldots,k}$-free semilinear $r$-partite $r$-uniform hypergraph. As an application, we obtain the following incidence bound: given $n_1$ points and $n_2$ open boxes with axis parallel sides in $\mathbb{R}^d$ such that their incidence graph is $K_{k,k}$-free, there can be at most $O_{k,\varepsilon}(n^{1+\varepsilon})$ incidences. The same bound holds if instead of boxes one takes polytopes cut out by the translates of an arbitrary fixed finite set of halfspaces. We also obtain matching upper and (superlinear) lower bounds in the case of dyadic boxes on the plane, and point out some connections to the model-theoretic trichotomy in $o$-minimal structures (showing that the failure of an almost linear bound for some definable graph allows one to recover the field operations from that graph in a definable manner).