论文标题

单个神经元的电热等效三维有限元模型

Electrothermal equivalent three-dimensional Finite Element Model of a single neuron

论文作者

Cinelli, Ilaria, Destrade, Michel, Duffy, Maeve, McHugh, Peter

论文摘要

目的:我们提出了一种新颖的方法,用于通过使用有限元(FE)分析中的电热等价来建模神经细胞中电和机械现象的相互依赖性,从而可以应用现有的热机械工具。方法:首先,建立了神经材料的电气和热性能之间的等效性,并用Abaqus CAE软件6.13-3进行的纯热传导分析的结果通过分析溶液在一系列稳定且短暂的条件下进行验证。该验证包括等效活性膜特性的定义,该特性可以预测动作电位。然后,作为迈向完全耦合模型的一步,通过使用热膨胀系数的定义神经膜的等效压电特性来实现机电耦合,从而可以预测神经对动作电位的机械响应。结果:耦合的电力机械模型的结果通过先前发表的鱿鱼巨型轴突,蟹神经纤维和Garfish嗅觉神经纤维变形的实验结果验证。结论:简化的耦合电力建模方法是通过生物医学应用的神经细胞的电热等效模型建立的。意义:关键发现之一是在耦合的电力域中神经活动的机械表征,该结构域可提供对神经细胞的机电行为的见解,例如膜的变薄。这是在神经束,组织和器官水平上创伤引起的3D机电改变建模的第一步。

Objective: We propose a novel approach for modelling the inter-dependence of electrical and mechanical phenomena in nervous cells, by using electro-thermal equivalences in finite element (FE) analysis so that existing thermo-mechanical tools can be applied. Methods: First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step towards fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results: Results of the coupled electro-mechanical model are validated with previously published experimental results of deformation for the squid giant axon, crab nerve fibre and garfish olfactory nerve fibre. Conclusion: A simplified coupled electro-mechanical modelling approach is established through an electro-thermal equivalent FE model of a nervous cell for biomedical applications. Significance: One of the key findings is the mechanical characterization of the neural activity in a coupled electro-mechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step towards modelling 3D electromechanical alteration induced by trauma at nerve bundle, tissue and organ levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源