论文标题
将风驱动模型应用于潮汐破坏事件的样本
Application of The Wind-Driven Model to A Sample of Tidal Disruption Events
论文作者
论文摘要
最近已经讨论了来自潮汐破坏事件(TDE)的光学/紫外线辐射的起源,但对于不同的情况进行了讨论,但通常缺少观察支持。在这封信中,我们测试了“风向模型”(UNO&MAEDA 2020)的适用性,以对紫外线/光学TDE的样本进行测试。使用该模型,我们旨在得出光学/UV TDE的物理特性,例如质量损失率和特征性半径。该模型假设光学厚的连续流出如恒星风,一个关键问题是风力射击半径如何连接到TDES中的物理过程。作为一种可能性,通过从其黑洞质量估计的逃逸速度与根据观察到的线宽度估算的风速之间的比较,我们提出流出是从自我交互半径($ r _ {\ rm si} $)中引发的,在该范围内,由Tidal Force Sidecects伸展了恒星的Debris debris。我们表明,$ r _ {\ rm si} $处的逃逸速度与风速大致一致。通过将模型应用于光学/UV TDE候选样本,我们发现爆炸性的质量弹出($ \ gtrsim 10〜M _ {\ odot} {\ rm yr yr^{ - 1}} $ a { TDE的特性围绕峰值光度。我们还将相同的框架应用于特殊的瞬态AT2018COW。该模型表明AT2018COW可能是由中间质量黑洞诱导的TDE($ M _ {\ rm BH} \ SIM 10^{4} 〜M _ {\ odot} $)。
An origin of the Optical/UV radiation from tidal disruption events (TDEs) has recently been discussed for different scenarios, but observational support is generally missing. In this Letter, we test applicability of the `Wind-Driven model' (Uno & Maeda 2020) to a sample of UV/Optical TDEs. With the model, we aim to derive the physical properties of the Optical/UV TDEs, such as mass-loss rates and characteristic radii. The model assumes optically thick continuous outflows like stellar winds, and one key question is how the wind-launched radius is connected to physical processes in TDEs. As one possibility, through a comparison between the escape velocities estimated from their black-hole masses and the wind velocities estimated from observed line widths, we propose that the outflow is launched from the self-interaction radius ($R_{\rm SI}$) where the stellar debris stretched by the tidal force intersects; we show that the escape velocities at $R_{\rm SI}$ are roughly consistent with the wind velocities. By applying the model to a sample of Optical/UV TDE candidates, we find that explosive mass ejections ($\gtrsim 10 ~M_{\odot}{\rm yr^{-1}}$) from $R_{\rm SI}$ ($\sim 10^{14}{\rm ~cm}$) can explain the observed properties of TDEs around peak luminosity. We also apply the same framework to a peculiar transient, AT2018cow. The model suggests that AT2018cow is likely a TDE induced by an intermediate-mass black hole ($M_{\rm BH} \sim 10^{4}~M_{\odot}$).