论文标题
纯仪表理论的椭圆形属,具有半神经的非相关量规
Elliptic genera of pure gauge theories in two dimensions with semisimple non-simply-connected gauge groups
论文作者
论文摘要
在本文中,我们描述了一种系统的方法,可以用量规组的g/gamma(对于G emisimple和简单连接G的gamma gamma gamma a gmama a g amma a g amma a g amma a g amp a g amp of g gamma a gamma a g amma a a g的中心的亚组)的椭圆形属。我们将技术应用于具有低量规组的纯仪表理论的示例。我们的结果与具有有限的全局一式对称性的二维理论分解的期望是一致的,并与纯仪表理论中某些离散的theta角度破坏的超对称性破坏的计算。最后,我们通过将分解并匹配到已知的超对称性断裂模式来预测所有其他剩余的纯仪理论的椭圆属。
In this paper we describe a systematic method to compute elliptic genera of (2,2) supersymmetric gauge theories in two dimensions with gauge group G/Gamma (for G semisimple and simply-connected, Gamma a subgroup of the center of G) with various discrete theta angles. We apply the technique to examples of pure gauge theories with low-rank gauge groups. Our results are consistent with expectations from decomposition of two-dimensional theories with finite global one-form symmetries and with computations of supersymmetry breaking for some discrete theta angles in pure gauge theories. Finally, we make predictions for the elliptic genera of all the other remaining pure gauge theories by applying decomposition and matching to known supersymmetry breaking patterns.