论文标题
深处Hiearchical多标签分类应用于胸部X射线异常分类法
Deep Hiearchical Multi-Label Classification Applied to Chest X-Ray Abnormality Taxonomies
论文作者
论文摘要
CXR是一种至关重要且非常常见的诊断工具,导致对CAD解决方案进行大量研究。但是,尊重和纳入临床分类法的高分类准确性和有意义的模型预测对于CAD可用性至关重要。为此,我们提出了CXR CAD的深HMLC方法。与其他分层系统不同,我们表明首先训练网络直接对条件概率进行建模,然后以无条件概率进行完善它是提高性能的关键。此外,我们还为无条件的概率制定了数值稳定的跨透明损失函数,可提供具体的性能改进。最后,我们证明HMLC可能是管理缺失或不完整标签的有效手段。据我们所知,我们是第一个将HMLC应用于医学成像CAD的人。我们广泛评估了我们从PLCO数据集的CXR组中检测异常标签的方法,该标签由手动注释的CXRS组成198,000美元以上。使用完整的标签时,我们报告的平均AUC为0.887,是该数据集报道的最高的AUC。这些结果得到了PADCHEST数据集的辅助实验的支持,在该数据集中,我们还报告了AUC和AP的显着改善,在强大的“平坦”分类器上分别为1.2%和4.1%。最后,我们证明我们的HMLC方法可以更好地处理未完全标记的数据。这些绩效的改进以及分类学预测的固有实用性,表明我们的方法代表了CXR CAD的有用一步。
CXRs are a crucial and extraordinarily common diagnostic tool, leading to heavy research for CAD solutions. However, both high classification accuracy and meaningful model predictions that respect and incorporate clinical taxonomies are crucial for CAD usability. To this end, we present a deep HMLC approach for CXR CAD. Different than other hierarchical systems, we show that first training the network to model conditional probability directly and then refining it with unconditional probabilities is key in boosting performance. In addition, we also formulate a numerically stable cross-entropy loss function for unconditional probabilities that provides concrete performance improvements. Finally, we demonstrate that HMLC can be an effective means to manage missing or incomplete labels. To the best of our knowledge, we are the first to apply HMLC to medical imaging CAD. We extensively evaluate our approach on detecting abnormality labels from the CXR arm of the PLCO dataset, which comprises over $198,000$ manually annotated CXRs. When using complete labels, we report a mean AUC of 0.887, the highest yet reported for this dataset. These results are supported by ancillary experiments on the PadChest dataset, where we also report significant improvements, 1.2% and 4.1% in AUC and AP, respectively over strong "flat" classifiers. Finally, we demonstrate that our HMLC approach can much better handle incompletely labelled data. These performance improvements, combined with the inherent usefulness of taxonomic predictions, indicate that our approach represents a useful step forward for CXR CAD.