论文标题

具有相关时间疾病的易感性感染模型的临界特性

Critical properties of the Susceptible-Exposed-Infected model with correlated temporal disorder

论文作者

Wada, Alexander H. O., Hoyos, José A.

论文摘要

在本文中,我们研究了易感性暴露感染模型在远距离相关的时变环境噪声对伯特晶格的影响下的临界特性。我们表明,时间噪声在扰动上是相关的,将通用类别从(平均场)动态渗透变为接触过程模型的异国无限无限通用类别。我们的分析结果是基于对一维布朗运动带有吸收壁的映射,并通过蒙特卡洛模拟确认。与接触过程不同,我们的理论还预测,很难在长期限制下观察相关的活动时间griffith阶段。最后,我们还通过将临时障碍与Domany-Kinzel细胞自动机之间的SEI模型联系在紧凑型簇的极限的情况下,通过将SEI模型与紧凑型群集的限制相关联,这也显示了无限噪声和紧凑的定向渗透通用类别之间的等效性。

In this paper we study the critical properties of the non-equilibrium phase transition of the Susceptible-Exposed-Infected model under the effects of long-range correlated time-varying environmental noise on the Bethe lattice. We show that temporal noise is perturbatively relevant changing the universality class from the (mean-field) dynamical percolation to the exotic infinite-noise universality class of the contact process model. Our analytical results are based on a mapping to the one-dimensional fractional Brownian motion with an absorbing wall and is confirmed by Monte Carlo simulations. Unlike the contact process, our theory also predicts that it is quite difficult to observe the associated active temporal Griffiths phase in the long-time limit. Finally, we also show an equivalence between the infinite-noise and the compact directed percolation universality classes by relating the SEI model in the presence of temporal disorder to the Domany-Kinzel cellular automaton in the limit of compact clusters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源