论文标题

A型A型kleinian奇异性的扭曲痕迹和正形式

Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A

论文作者

Etingof, Pavel, Klyuev, Daniil, Rains, Eric, Stryker, Douglas

论文摘要

以下[Beem C.,Peelaers W.,Rastelli L.,Comm。数学。物理。 354(2017),345-392,Arxiv:1601.05378]和[Etingof P.,Stryker D.,Sigma 16(2020),014,28页,Arxiv:1909.13588],我们对kleinian symilimilial signimolinemlimilial symilimilitial symilimilitial symilinelimilition $a__________________________________________________________________________________________________________________________。特别是,我们为这些痕迹提供了明确的积分公式,并使用它们来确定痕迹何时在相应的代数上定义了阳性遗传形式。这导致了此类量化的单一短星形成的分类,这是Beem,Peelaers和Rastelli与3维超符合场理论相关的问题。特别是,我们确认他们的猜想是,对于$ n \ le 4 $,统一的短星级产物是唯一的,并将其参数计算为量化参数的函数,从而提供了Beem,eemaers和peelaers和rastelli的数值函数的精确公式。如果$ n = 2 $,则尤其是,以$ {\ mathfrak {sl}} _ 2 $恢复统一的球形harish-chandra bimodules的理论。因此,本文的结果可能被视为对统一的Harish-Chandra Bimodules概括的概括的起点,而不是围绕还原的代数代数代数[Vogan Jr. D.A.,《数学研究年鉴》,第1卷。 118,普林斯顿大学出版社,新泽西州普林斯顿,1987年]到更通用的量子代数。最后,我们得出复发以计算与扭曲痕迹相对应的短星形产品的系数,这些痕迹是离散painlevé系统的概括。

Following [Beem C., Peelaers W., Rastelli L., Comm. Math. Phys. 354 (2017), 345-392, arXiv:1601.05378] and [Etingof P., Stryker D., SIGMA 16 (2020), 014, 28 pages, arXiv:1909.13588], we undertake a detailed study of twisted traces on quantizations of Kleinian singularities of type $A_{n-1}$. In particular, we give explicit integral formulas for these traces and use them to determine when a trace defines a positive Hermitian form on the corresponding algebra. This leads to a classification of unitary short star-products for such quantizations, a problem posed by Beem, Peelaers and Rastelli in connection with 3-dimensional superconformal field theory. In particular, we confirm their conjecture that for $n\le 4$ a unitary short star-product is unique and compute its parameter as a function of the quantization parameters, giving exact formulas for the numerical functions by Beem, Peelaers and Rastelli. If $n=2$, this, in particular, recovers the theory of unitary spherical Harish-Chandra bimodules for ${\mathfrak{sl}}_2$. Thus the results of this paper may be viewed as a starting point for a generalization of the theory of unitary Harish-Chandra bimodules over enveloping algebras of reductive Lie algebras [Vogan Jr. D.A., Annals of Mathematics Studies, Vol. 118, Princeton University Press, Princeton, NJ, 1987] to more general quantum algebras. Finally, we derive recurrences to compute the coefficients of short star-products corresponding to twisted traces, which are generalizations of discrete Painlevé systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源