论文标题

在第二个Weyl代数中的理想化器

Idealizers in the Second Weyl Algebra

论文作者

Reynolds, Ruth A.

论文摘要

鉴于一个正确的理想$ i $ in Ring $ r $,$ r $ $ i $ in $ i $ r $的理想化镜是$ r $的最大子来源,其中$ i $成为双面理想。在本文中,我们考虑了第二个Weyl代数$ a_2 $的理想化器,这是$ \ m athbb {k} [k} [x,y] $(特征$ 0 $)上的微分运算符环。具体而言,让$ f $是$ x $和$ y $的多项式,它定义了一种不可约束的曲线,其奇异性都是尖端。我们表明,正确的理想$ fa_2 $ in $ a_2 $的理想化合物始终是左右的noetherian,从而扩展了McCaffrey的工作。

Given a right ideal $I$ in a ring $R$, the idealizer of $I$ in $R$ is the largest subring of $R$ in which $I$ becomes a two-sided ideal. In this paper we consider idealizers in the second Weyl algebra $A_2$, which is the ring of differential operators on $\mathbb{k}[x,y]$ (in characteristic $0$). Specifically, let $f$ be a polynomial in $x$ and $y$ which defines an irreducible curve whose singularities are all cusps. We show that the idealizer of the right ideal $fA_2$ in $A_2$ is always left and right noetherian, extending the work of McCaffrey.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源