论文标题
零循环对品种的自我产生:一些基本例子验证Voisin的猜想
Zero-cycles on self-products of varieties: some elementary examples verifying Voisin's conjecture
论文作者
论文摘要
Voisin的旧猜想描述了当$ x $上的零循环在将$ x $的零循环推向自propoppuct $ x^m $的$ x^m $上,$ m $比$ x $的几何属大。使用四边形的完整交叉点,我们在任何维度和任意高的几何属中提供了验证Voisin猜想的示例。
An old conjecture of Voisin describes how zero-cycles on a variety $X$ should behave when pulled-back to the self-product $X^m$ for $m$ larger than the geometric genus of $X$. Using complete intersections of quadrics, we give examples of varieties in any dimension and with arbitrarily high geometric genus that verify Voisin's conjecture.