论文标题

多频Schrödinger操作员的零度量频谱

Zero Measure Spectrum for Multi-Frequency Schrödinger Operators

论文作者

Chaika, Jon, Damanik, David, Fillman, Jake, Gohlke, Philipp

论文摘要

勒贝格(Lebesgue)几乎每次翻译都以berthé的作品为基础 - 斯坦纳(Steiner) - 斯泰恩(Steiner) - 乌斯瓦尔德纳(Thuswaldner)和福格(Fogg),几乎每次翻译都承认了自然编码,因此相关的子迁移满足了Boshernitzan的标准。结果,我们表明,对于这些圆环翻译,每个准周期电位都可以通过相关的schrödinger运算符具有零lebesgue度量的cantor频谱均匀地近似。我们还描述了一个框架,该框架可以扩展到更高维的托里。

Building on works of Berthé--Steiner--Thuswaldner and Fogg--Nous we show that on the two-dimensional torus, Lebesgue almost every translation admits a natural coding such that the associated subshift satisfies the Boshernitzan criterion. As a consequence we show that for these torus translations, every quasi-periodic potential can be approximated uniformly by one for which the associated Schrödinger operator has Cantor spectrum of zero Lebesgue measure. We also describe a framework that can allow this to be extended to higher-dimensional tori.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源