论文标题

最长的K-单酮链

Longest k-monotone chains

论文作者

Ambrus, Gergely

论文摘要

我们研究单位正方形中随机点集的高阶凸度性能。给定$ n $统一的i.i.d随机点,我们得出了$ k $ - 单酮位置的最大数量的渐近估计值,但受到轻度边界条件的约束。除了确定预期的数量级外,我们还证明了强烈的浓度估计值。我们提供一个通用框架,其中包括先前研究的$ k = 1 $(最长增加序列)和$ k = 2 $(最长的凸链)的案例。

We study higher order convexity properties of random point sets in the unit square. Given $n$ uniform i.i.d random points, we derive asymptotic estimates for the maximal number of them which are in $k$-monotone position, subject to mild boundary conditions. Besides determining the order of magnitude of the expectation, we also prove strong concentration estimates. We provide a general framework that includes the previously studied cases of $k=1$ (longest increasing sequences) and $k=2$ (longest convex chains).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源