论文标题

基于深度学习的管道,用于从EL测量的模块功率预测

Deep Learning-based Pipeline for Module Power Prediction from EL Measurements

论文作者

Hoffmann, Mathis, Buerhop-Lutz, Claudia, Reeb, Luca, Pickel, Tobias, Winkler, Thilo, Doll, Bernd, Würfl, Tobias, Peters, Ian Marius, Brabec, Christoph, Maier, Andreas, Christlein, Vincent

论文摘要

自动化检查在监测大型光伏发电厂中起着重要作用。通常,使用电弹性测量值来识别太阳模块上的各种缺陷,但尚未用于确定模块的功率。但是,在最大功率点上对功率的知识也很重要,因为单个模块的功率下降会影响整个字符串的性能。到目前为止,这通常是由需要失调甚至卸下模块的测量结果确定的,从而定期检查单个模块不可行。在这项工作中,我们弥合了电子感测量和模块的功率测定之间的差距。我们在各个降解阶段,尤其是细胞裂纹和断裂,以及最大功率点处的相应功率,编译了一个模块的719个电量测量值的大型数据集。在这里,我们专注于无活跃的区域和裂纹作为主要缺陷类型。我们设置了一个基线回归模型,以预测电闪光测量值的功率,平均绝对误差为9.0 +/- 3.7 $ W_P $(4.0 +/- 8.4%)。然后,我们表明可以使用深度学习来训练一个模型,该模型的性能明显更好(7.3 +/- 2.7 $ W_P $或3.2 +/- 6.5%),并提出类似类激活图的变体,以获得该模型所预测的每个单元电源损失。通过这项工作,我们旨在开放一个新的研究主题。因此,我们公开发布数据集,代码和训练有素的模型,以使其他研究人员能够与我们的结果进行比较。最后,我们对某些边界条件(例如数据集大小)和现场测量的自动预处理管道(一次显示多个模块)进行了彻底评估。

Automated inspection plays an important role in monitoring large-scale photovoltaic power plants. Commonly, electroluminescense measurements are used to identify various types of defects on solar modules but have not been used to determine the power of a module. However, knowledge of the power at maximum power point is important as well, since drops in the power of a single module can affect the performance of an entire string. By now, this is commonly determined by measurements that require to discontact or even dismount the module, rendering a regular inspection of individual modules infeasible. In this work, we bridge the gap between electroluminescense measurements and the power determination of a module. We compile a large dataset of 719 electroluminescense measurementsof modules at various stages of degradation, especially cell cracks and fractures, and the corresponding power at maximum power point. Here,we focus on inactive regions and cracks as the predominant type of defect. We set up a baseline regression model to predict the power from electroluminescense measurements with a mean absolute error of 9.0+/-3.7$W_P$ (4.0+/-8.4%). Then, we show that deep-learning can be used to train a model that performs significantly better (7.3+/-2.7$W_P$ or 3.2+/-6.5%) and propose a variant of class activation maps to obtain the per cell power loss, as predicted by the model. With this work, we aim to open a new research topic. Therefore, we publicly release the dataset, the code and trained models to empower other researchers to compare against our results. Finally, we present a thorough evaluation of certain boundary conditions like the dataset size and an automated preprocessing pipeline for on-site measurements showing multiple modules at once.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源