论文标题

Kalkayotl:群集距离推理代码

Kalkayotl: A cluster distance inference code

论文作者

Olivares, J., Sarro, L. M., Bouy, H., Miret-Roig, N., Casamiquela, L., Galli, P. A. B., Berihuete, A., Tarricq, Y.

论文摘要

上下文:恒星簇是恒星形成和进化理论的基准。 GAIA任务的高精度视差数据可显着改善恒星簇及其恒星的距离确定。为了获得准确而精确的距离确定,需要考虑类似的系统学,尤其是对于小型天空区域的恒星,需要考虑视差空间相关性。目的:为天体物理社区提供一个免费的开放代码,旨在同时推断群集参数(即距离和大小),并使用Gaia视差测量值和恒星距离。它包括面向群集的先前家庭,专门设计用于处理Gaia视差空间相关性。方法:创建一个贝叶斯分层模型,以允许将群集参数和距离推断为恒星。结果:使用模仿Gaia视差的不确定性和空间相关性的合成数据,我们观察到,面向群集的先前家族会导致距离估计的距离,其误差较小,而误差较小。此外,视差空间相关性的处理可最大程度地减少估计的簇大小和恒星距离的错误,并避免了不确定性的低估。尽管忽略视差空间相关性没有影响群集距离确定的准确性,但它低估了不确定性,并可能导致与真实值不符的测量值。结论:先验知识与Gaia视差空间相关的处理结合可产生准确的(误差<10%)和值得信赖的估计值(即,在2 $σ$不确定性中包含的clusters距离内包含的真实值(即clusters the 2 $σ$不确定性),可用于〜5 kpc,并集中群的尺寸,以及群集的量,并集中群量最高至〜1 kpc。

Context: Stellar clusters are benchmarks for theories of star formation and evolution. The high precision parallax data of the Gaia mission allows significant improvements in the distance determination to stellar clusters and its stars. In order to have accurate and precise distance determinations, systematics like the parallax spatial correlations need to be accounted for, especially for stars in small sky regions. Aims: Provide the astrophysical community with a free and open code designed to simultaneously infer cluster parameters (i.e. distance and size) and the distances to its stars using Gaia parallax measurements. It includes cluster oriented prior families and is specifically designed to deal with the Gaia parallax spatial correlations. Methods: A Bayesian hierarchical model is created to allow the inference of both the cluster parameters and distances to its stars. Results: Using synthetic data that mimics Gaia parallax uncertainties and spatial correlations, we observe that our cluster oriented prior families result in distance estimates with smaller errors than those obtained with an exponentially decreasing space density prior. In addition, the treatment of the parallax spatial correlations minimizes errors in the estimated cluster size and stellar distances and avoids the underestimation of uncertainties. Although neglecting the parallax spatial correlations has no impact on the accuracy of cluster distance determinations, it underestimates the uncertainties and may result in measurements that are incompatible with the true value. Conclusions: The combination of prior knowledge with the treatment of Gaia parallax spatial correlations produces accurate (error <10%) and trustworthy estimates (i.e. true values contained within the 2$σ$ uncertainties) of clusters distances for clusters up to ~5 kpc, and cluster sizes for clusters up to ~1 kpc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源