论文标题

垂直轴风力涡轮机不对称唤醒的分析模型

Analytical models for the asymmetric wake of vertical axis wind turbines

论文作者

Ouro, Pablo, Lazennec, Maxime

论文摘要

垂直轴风力涡轮机(VAWT)的阵列可以实现比水平轴涡轮机养殖场更大的发电量,这是由于桶之间的正相关,近距离接近。理论唤醒模型可以使阵列布局的可靠设计最大化能量输出,这需要描绘驱动尾流动态。 VAWT会产生一个高度复杂的唤醒,该唤醒会根据两个管理长度尺度而演变,即涡轮转子的直径和高度,定义了尾流横截面的矩形形状,并具有不同的唤醒膨胀速率。本文介绍了分析性VAWT尾流模型,这些模型解释了采用顶级帽子和高斯速度不足分布的这种唤醒扩展的不对称分布。我们提出的分析高斯模型导致在转子后面的唤醒宽度($ \ varepsilon $)的最初唤醒扩展预测相当于$(β/4π)^{1/2} $,而$β$是$β$是初始唤醒区域与先前模型的局限性,该领域限制了唤醒区域的局限性,从而解决了先前的模型的局限性。速度不足预测是在一系列数值基准中计算出来的,该数值基准由单个和四个在线垂直轴风力涡轮机组成。在与现场数据和大涡模拟的比较中,我们的模型提供了良好的准确性,可以代表平均唤醒分布,最大速度赤字和动量厚度,而高斯模型可实现最佳的预测。这些模型将有助于推动增值税阵列的设计并加速这项技术。

Arrays of Vertical Axis Wind Turbines (VAWTs) can achieve larger power generation per land area than horizontal axis turbines farms, due to the positive synergy between VATs in close proximity. Theoretical wake models enable the reliable design of the array layout that maximises the energy output, which need to depict the driving wake dynamics. VAWTs generate a highly complex wake that evolves according to two governing length-scales, namely the turbine rotor's diameter and height which define a rectangular shape of the wake cross-section, and feature distinct wake expansion rates. This paper presents analytical VAWT wake models that account for an asymmetric distribution of such wake expansion adopting a top-hat and Gaussian velocity deficit distribution. Our proposed analytical Gaussian model leads to an enhanced initial wake expansion prediction with the wake width ($\varepsilon$) behind the rotor equal to $(β/4 π)^{1/2}$ with $β$ being the ratio of initial wake area to the VAWT's frontal area, which addresses the limitations of previous models that under-predicted the wake onset area. Velocity deficit predictions are calculated in a series of numerical benchmarks consisting of a single and an array of four in-line vertical axis wind turbines. In comparisons with field data and large-eddy simulations, our models provide a good accuracy to represent the mean wake distribution, maximum velocity deficit, and momentum thickness, with the Gaussian model attaining the best predictions.These models will aid to drive the design of VAT arrays and accelerate this technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源