论文标题
Espresso@vlt-天空表演和首先结果
ESPRESSO@VLT -- On-sky performance and first results
论文作者
论文摘要
Espresso是ESO非常大型望远镜(VLT)的新型高分辨率光谱仪。它的设计用于超高的径向速度精度和极端的频谱保真度,目的是进行外部外行研究和基本的天体物理实验,具有前所未有的精度和准确性。它能够在VLT的四个单元望远镜(UT)中观察到在378.2至788.7 nm波长范围内的140,000或190,000的频谱分辨能力,或者将所有UTS一起使用,将VLT转换为直径16 m的等效远程望远镜,同时还可以在收集70的范围内,并将其转换为16 m。我们提供了浓缩咖啡仪器的一般描述,报告了实际的天上绩效,并介绍了我们的保证时间观察(GTO)计划,并以其第一个结果。浓缩咖啡是在2017年秋季安装在议型天文台上的。调试(天上的测试)是在2017年12月至2018年9月之间进行的。该乐器在2018年10月1日在2018年10月1日进行了正式的运营开始,但对乐器和重新委托运行的改进进行了改善,但在2019年7月进行了超过550 nmm Mark the Mark Espresso的整体命中。天文气候条件。我们在一晚期间证明了径向速度的精度高于25 cm/s,在几个月内50 cm/s。这些值受到光子噪声和恒星抖动的限制,表明性能与10 cm/s的仪器精度兼容。在吞吐量和RV精度中均未测量UTS的差异。大型收集望远镜区域与意式浓缩咖啡的效率和精致光谱保真度的结合在RV测量中打开了一个新的参数空间,对行星大气,基本常数,恒星表征和许多其他领域的研究。
ESPRESSO is the new high-resolution spectrograph of ESO's Very-Large Telescope (VLT). It was designed for ultra-high radial-velocity precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical experiments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UT) of the VLT at a spectral resolving power of 140,000 or 190,000 over the 378.2 to 788.7 nm wavelength range, or with all UTs together, turning the VLT into a 16-m diameter equivalent telescope in terms of collecting area, while still providing a resolving power of 70,000. We provide a general description of the ESPRESSO instrument, report on the actual on-sky performance, and present our Guaranteed-Time Observation (GTO) program with its first results. ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1st, 2018, but improvements to the instrument and re-commissioning runs were conducted until July 2019. The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65 arcsec exceeds the 10% mark under nominal astro-climatic conditions. We demonstrate a radial-velocity precision of better than 25 cm/s during one night and 50 cm/s over several months. These values being limited by photon noise and stellar jitter show that the performanceis compatible with an instrumental precision of 10 cm/s. No difference has been measured across the UTs neither in throughput nor RV precision. The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterisation and many other fields.