论文标题

具有深层神经网络的解剖学分析点云的判别和生成模型

Discriminative and Generative Models for Anatomical Shape Analysison Point Clouds with Deep Neural Networks

论文作者

Becker, Benjamin Gutierrez, Sarasua, Ignacio, Wachinger, Christian

论文摘要

我们介绍了深层神经网络,以分析解剖形状,这些形状从给定的任务中学习低维形状表示,而不是依靠手工设计的表示。我们的框架是模块化的,由几个执行基本形状处理任务的计算块组成。网络在无序的点云上运行,并为相似性转换提供不变性,从而避免了识别形状之间的点对应关系的需求。基于该框架,我们组装了一个疾病分类和年龄回归的歧视性模型,以及用于应计形状重建的生成模型。特别是,我们提出了一个条件生成模型,其中条件矢量提供了控制生成过程的机制。实例,它可以评估特定诊断的形状变化,并作为侧面信息传递。除了从事单一形状的工作之外,我们还引入了一个扩展,以进行多个解剖结构的联合分析,其中多个结构的同时建模可以导致更紧凑的编码和对疾病的更好理解。我们在有关真实和合成数据的综合实验中证明了框架的优势。关键见解是(i)学习特定于给定任务的形状表示比替代形状描述符的性能更高,(ii)多结构分析既比单一结构分析更有效,更准确,并且(iii)点云由我们的模型捕获捕获形态学差异而与阿尔茨海默氏病相关的模型群体来训练歧视模型。我们的框架自然地扩展到大型数据集的分析,从而有可能学习大量人群的特征变化。

We introduce deep neural networks for the analysis of anatomical shapes that learn a low-dimensional shape representation from the given task, instead of relying on hand-engineered representations. Our framework is modular and consists of several computing blocks that perform fundamental shape processing tasks. The networks operate on unordered point clouds and provide invariance to similarity transformations, avoiding the need to identify point correspondences between shapes. Based on the framework, we assemble a discriminative model for disease classification and age regression, as well as a generative model for the accruate reconstruction of shapes. In particular, we propose a conditional generative model, where the condition vector provides a mechanism to control the generative process. instance, it enables to assess shape variations specific to a particular diagnosis, when passing it as side information. Next to working on single shapes, we introduce an extension for the joint analysis of multiple anatomical structures, where the simultaneous modeling of multiple structures can lead to a more compact encoding and a better understanding of disorders. We demonstrate the advantages of our framework in comprehensive experiments on real and synthetic data. The key insights are that (i) learning a shape representation specific to the given task yields higher performance than alternative shape descriptors, (ii) multi-structure analysis is both more efficient and more accurate than single-structure analysis, and (iii) point clouds generated by our model capture morphological differences associated to Alzheimers disease, to the point that they can be used to train a discriminative model for disease classification. Our framework naturally scales to the analysis of large datasets, giving it the potential to learn characteristic variations in large populations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源