论文标题

trix:容易耐故障硬件的低旋转脉冲传播

TRIX: Low-Skew Pulse Propagation for Fault-Tolerant Hardware

论文作者

Lenzen, Christoph, Wiederhake, Ben

论文摘要

绝大多数硬件体系结构都使用精心定时的参考信号来计算其计算逻辑。但是,标准分布解决方案不是容易的。在这项工作中,我们将简单的网格结构作为一种更可靠的时钟传播方法,并通过仿真实验进行研究。通过从上一层转发三个传入信号中的第二个来源时,可以通过转发时钟脉冲来实现故障容忍度。 一个关键的问题是,即使没有故障,相邻的网格节点的同步程度如何。在典型的情况下,分析时钟偏斜是高度挑战性的。由于转发机制涉及采用中位数,因此即使仅通过无偏的硬币翻转来建模链接延迟,标准概率工具也会失败。 我们的统计方法提供了大量证据,表明该系统的性能出乎意料。具体而言,在高度〜$ h $的“无限宽”网格中,预先选择的节点的延迟表现出$ o(h^{1/4})$($ \ \ \ \ \ \ \ h = 2000 $)的链接延迟不确定性的标准偏差($ \ of 2.7 $链接延迟不确定性)和相邻的nodes of $ o(\ log log f log h)$(\ log h)$($ f log \ h)($)( $ h = 2000 $)。我们得出的结论是,提出的系统是一种非常有前途的时钟分布方法。这导致了对延迟和偏斜紧密浓度的随机解释的开放问题。更普遍地,我们认为,了解我们对系统的非常简单的抽象本身就是数学兴趣。

The vast majority of hardware architectures use a carefully timed reference signal to clock their computational logic. However, standard distribution solutions are not fault-tolerant. In this work, we present a simple grid structure as a more reliable clock propagation method and study it by means of simulation experiments. Fault-tolerance is achieved by forwarding clock pulses on arrival of the second of three incoming signals from the previous layer. A key question is how well neighboring grid nodes are synchronized, even without faults. Analyzing the clock skew under typical-case conditions is highly challenging. Because the forwarding mechanism involves taking the median, standard probabilistic tools fail, even when modeling link delays just by unbiased coin flips. Our statistical approach provides substantial evidence that this system performs surprisingly well. Specifically, in an "infinitely wide" grid of height~$H$, the delay at a pre-selected node exhibits a standard deviation of $O(H^{1/4})$ ($\approx 2.7$ link delay uncertainties for $H=2000$) and skew between adjacent nodes of $o(\log \log H)$ ($\approx 0.77$ link delay uncertainties for $H=2000$). We conclude that the proposed system is a very promising clock distribution method. This leads to the open problem of a stochastic explanation of the tight concentration of delays and skews. More generally, we believe that understanding our very simple abstraction of the system is of mathematical interest in its own right.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源