论文标题

知识增强的个性化评论生成胶囊图神经网络

Knowledge-Enhanced Personalized Review Generation with Capsule Graph Neural Network

论文作者

Li, Junyi, Li, Siqing, Zhao, Wayne Xin, He, Gaole, Wei, Zhicheng, Yuan, Nicholas Jing, Wen, Ji-Rong

论文摘要

个性化的评论生成(PRG)旨在自动生成反映用户偏好的评论文本,这是一项具有挑战性的自然语言生成任务。以前的大多数研究都没有明确对产品的事实描述进行建模,从而倾向于产生非信息性内容。此外,它们主要关注单词级生成,但不能准确地反映出多个方面的更抽象的用户偏好。为了解决上述问题,我们提出了一种基于胶囊图神经网络(CAPS-GNN)的新型知识增强的PRG模型。我们首先构建了一个用于利用丰富项目属性的异质知识图(HKG)。我们采用CAPS-GNN来学习图形胶囊,以编码来自HKG的基本特征。我们的一代过程包含两个主要步骤,即序列生成和句子生成。首先,基于图形胶囊,我们自适应地学习了用于推断该方面序列的方面胶囊。然后,以推断的方面标签为条件,我们设计了一种基于图的复制机制来通过合并相关实体或HKG的单词来生成句子。据我们所知,我们是第一个将知识图用于PRG任务的人。合并的KG信息能够在方面和单词级别上增强用户偏好。在三个现实世界数据集上进行的广泛实验证明了我们模型对PRG任务的有效性。

Personalized review generation (PRG) aims to automatically produce review text reflecting user preference, which is a challenging natural language generation task. Most of previous studies do not explicitly model factual description of products, tending to generate uninformative content. Moreover, they mainly focus on word-level generation, but cannot accurately reflect more abstractive user preference in multiple aspects. To address the above issues, we propose a novel knowledge-enhanced PRG model based on capsule graph neural network~(Caps-GNN). We first construct a heterogeneous knowledge graph (HKG) for utilizing rich item attributes. We adopt Caps-GNN to learn graph capsules for encoding underlying characteristics from the HKG. Our generation process contains two major steps, namely aspect sequence generation and sentence generation. First, based on graph capsules, we adaptively learn aspect capsules for inferring the aspect sequence. Then, conditioned on the inferred aspect label, we design a graph-based copy mechanism to generate sentences by incorporating related entities or words from HKG. To our knowledge, we are the first to utilize knowledge graph for the PRG task. The incorporated KG information is able to enhance user preference at both aspect and word levels. Extensive experiments on three real-world datasets have demonstrated the effectiveness of our model on the PRG task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源