论文标题

复杂古典谎言组的狄拉克系列:多重性 - 定理

Dirac series for complex classical Lie groups: A multiplicity-one theorem

论文作者

Barbasch, Dan, Dong, Chao-Ping, Wong, Kayue Daniel

论文摘要

本文计算了不可约统一的Harish-Chandra模块的Dirac Sopomology $ h_d(π)$的复杂古典群体的$π$,被视为真正的还原群体。更确切地说,具有非零狄拉克共同体学的单一表示是由单一表示的单位引起的。当非零时,会有一个唯一的,多重的$ k-$ type $π$,$ h_d(π)$。这证实了第一名命名作者和Pandzic在2011年提出的猜想。

This paper computes the Dirac cohomology $H_D(π)$ of irreducible unitary Harish-Chandra modules $π$ of complex classical groups viewed as real reductive groups. More precisely, unitary representations with nonzero Dirac cohomology are shown to be unitarily induced from unipotent representations. When nonzero, there is a unique, multiplicity free $K-$type in $π$ contributing to $H_D(π)$. This confirms conjectures formulated by the first named author and Pandzic in 2011.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源