论文标题

拓扑动力学系统中算术进程空间的亲能剂

Pro-nilfactors of the space of arithmetic progressions in topological dynamical systems

论文作者

Lian, Zhengxing, Qiu, Jiahao

论文摘要

对于拓扑动力系统,$(x,t)$,$ l \ in \ mathbb {n} $和$ x \ in x $,让$ n_l(x)$和$ l_x^l(x)$是对角点$的轨道关闭$(x,x,x,x,x,x,\ ldots,x)$ time $ time $ time $ time $ time $ time $ time $ time $ n ocation $ {分别$ \ \ $ \ MATHCAL {G} _ {l} $由$ t \ times t \ times t \ times \ ldots \ times t $($ l $ times)和$τ_l= t \ t \ times t^2 \ times t^2 \ times \ ldots \ ldots \ ldots \ ldots \ ldots \ ldots \ ldots \ times t^l $。在本文中,我们表明,对于最小的系统$(x,t)$和$ l \ in \ mathbb {n} $,最大$ d $ -d $ -Step pro-nilfactor的$(n_l(x),\ Mathcal {g} _ {l} _ {l} _ {l}) $π_d:x \ to x/\ mathbf {rp}^{[[d]} = x_d,d \ in \ mathbb {n} $是因子映射,$ \ mathbf {rp}^{[d]} $是订单$ d $的区域性关系。 同时,当$(x,t)$是一个最小的nilsystem时,我们还计算几乎每$ x $ w.r.t.的$(l_x^l(x),τ_l)$的pro-nilfactors $。 HAAR措施。特别是,存在最小的$ 2 $ -Step nilsystem $(y,t)$和一个可数的套装$ω\ subset y $,因此对于$ y \ in y \ backslashω$,最大的等效因子为$(l_y^2(y),τ_2)$(τ_2)$ $(l_ {π_1(y)}^2(y_ {1}),τ_2)$。

For a topological dynamical system $(X, T)$, $l\in\mathbb{N}$ and $x\in X$, let $N_l(X)$ and $L_x^l(X)$ be the orbit closures of the diagonal point $(x,x,\ldots,x)$ ($l $ times) under the actions $\mathcal{G}_{l}$ and $τ_l $ respectively, where $\mathcal{G}_{l}$ is generated by $T\times T\times \ldots \times T$ ($l $ times) and $τ_l=T\times T^2\times \ldots \times T^l$. In this paper, we show that for a minimal system $(X,T)$ and $l\in \mathbb{N}$, the maximal $d$-step pro-nilfactor of $(N_l(X),\mathcal{G}_{l})$ is $(N_l(X_d),\mathcal{G}_{l})$, where $π_d:X\to X/\mathbf{RP}^{[d]}=X_d,d\in \mathbb{N}$ is the factor map and $\mathbf{RP}^{[d]}$ is the regionally proximal relation of order $d$. Meanwhile, when $(X,T)$ is a minimal nilsystem, we also calculate the pro-nilfactors of $(L_x^l(X),τ_l)$ for almost every $x$ w.r.t. the Haar measure. In particular, there exists a minimal $2$-step nilsystem $(Y,T)$ and a countable set $Ω\subset Y$ such that for $y\in Y\backslash Ω$ the maximal equicontinuous factor of $(L_y^2(Y),τ_2)$ is not $(L_{π_1(y)}^2(Y_{1}),τ_2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源