论文标题
深层表示相似性学习,用于分析基于任务的fMRI数据集中的神经特征
Deep Representational Similarity Learning for analyzing neural signatures in task-based fMRI dataset
论文作者
论文摘要
相似性分析是大多数功能磁共振成像研究的关键步骤之一。代表性相似性分析(RSA)可以衡量不同认知状态产生的神经信号的相似性。本文开发了深度的代表性相似性学习(DRSL),这是RSA的深度扩展,适合分析具有大量受试者的fMRI数据集中各种认知任务之间的相似性和高维度(例如全脑图像)。与以前的方法不同,DRSL不受线性转换或受限的固定非线性核函数的限制 - 例如高斯核。 DRSL利用多层神经网络将神经响应映射到线性空间中,该网络可以分别为每个主题实施自定义的非线性转换。此外,在DRSL中使用基于梯度的优化可以显着降低大数据集上的分析运行时,因为它在每种迭代中使用一批样本,而不是所有神经响应来找到最佳解决方案。对具有各种任务的多主体FMRI数据集(包括视觉刺激,决策,风味和工作记忆)的实证研究证实,所提出的方法可以在其他最先进的RSA算法上实现出色的性能。
Similarity analysis is one of the crucial steps in most fMRI studies. Representational Similarity Analysis (RSA) can measure similarities of neural signatures generated by different cognitive states. This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of RSA that is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects, and high-dimensionality -- such as whole-brain images. Unlike the previous methods, DRSL is not limited by a linear transformation or a restricted fixed nonlinear kernel function -- such as Gaussian kernel. DRSL utilizes a multi-layer neural network for mapping neural responses to linear space, where this network can implement a customized nonlinear transformation for each subject separately. Furthermore, utilizing a gradient-based optimization in DRSL can significantly reduce runtime of analysis on large datasets because it uses a batch of samples in each iteration rather than all neural responses to find an optimal solution. Empirical studies on multi-subject fMRI datasets with various tasks -- including visual stimuli, decision making, flavor, and working memory -- confirm that the proposed method achieves superior performance to other state-of-the-art RSA algorithms.