论文标题
Seiberg-witten的浮子同件触点不变
Seiberg-Witten Floer homotopy contact invariant
论文作者
论文摘要
我们介绍了由Kronheimer-Mrowka-ozváth-Szabó引入的触点不变式的浮动均匀版本。此外,我们证明了一种胶合公式,该公式与第一作者的鲍尔 - 富图型不变式有关,该式不变型不变,该式不变型不变,它可以完善Kronheimer-Mrowka的不变式,用于具有接触边界的4个manifolds。作为一个应用程序,我们使用Equivariant KO-CoHomogology对某些类别的符号填充物给出了限制。
We introduce a Floer homotopy version of the contact invariant introduced by Kronheimer-Mrowka-Ozváth-Szabó. Moreover, we prove a gluing formula relating our invariant with the first author's Bauer-Furuta type invariant, which refines Kronheimer-Mrowka's invariant for 4-manifolds with contact boundary. As an application, we give a constraint for a certain class of symplectic fillings using equivariant KO-cohomology.