论文标题

使用结构化学习合奏和上下文化的嵌入在湿实验室协议中在Wnut 2020共享任务1:实体识别1:实体识别19:

PublishInCovid19 at WNUT 2020 Shared Task-1: Entity Recognition in Wet Lab Protocols using Structured Learning Ensemble and Contextualised Embeddings

论文作者

Singh, Janvijay, Wadhawan, Anshul

论文摘要

在本文中,我们描述了我们为解决湿实验室协议的实体识别任务的方法 - EMNLP WNUT-2020研讨会中的共同任务。我们的方法由两个阶段组成。在第一阶段,我们尝试了各种上下文化的单词嵌入(例如Flair,基于BERT)和BILSTM-CRF模型,以达到表现最佳的体系结构。在第二阶段,我们创建了一个由11个Bilstm-CRF模型组成的合奏。单个模型经过完整数据集的随机火车验证拆分培训。在这里,我们还尝试了不同的输出合并方案,包括多数投票和结构化学习结合(SLE)。我们的最终提交分别达到了实体跨度的部分和精确匹配的微型F1得分为0.8175和0.7757。就部分和精确匹配而言,我们排名第一和第二。

In this paper, we describe the approach that we employed to address the task of Entity Recognition over Wet Lab Protocols -- a shared task in EMNLP WNUT-2020 Workshop. Our approach is composed of two phases. In the first phase, we experiment with various contextualised word embeddings (like Flair, BERT-based) and a BiLSTM-CRF model to arrive at the best-performing architecture. In the second phase, we create an ensemble composed of eleven BiLSTM-CRF models. The individual models are trained on random train-validation splits of the complete dataset. Here, we also experiment with different output merging schemes, including Majority Voting and Structured Learning Ensembling (SLE). Our final submission achieved a micro F1-score of 0.8175 and 0.7757 for the partial and exact match of the entity spans, respectively. We were ranked first and second, in terms of partial and exact match, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源