论文标题

使用对象检测的汽车雷达数据采集

Automotive Radar Data Acquisition using Object Detection

论文作者

Sakthi, Madhumitha, Tewfik, Ahmed

论文摘要

不断增长的城市复杂性需要有效的算法来从自动驾驶汽车中获取和处理各种传感器信息。在本文中,我们引入了一种算法来利用来自图像的对象检测结果,以适应性样品并使用压缩感应(CS)获取雷达数据。这种新颖的算法是由以下假设的动机:在采样预算有限的情况下,将更多的采样预算分配给具有该物体的区域而不是均匀采样最终可以改善相关的对象检测性能。我们通过将较低的采样率分配给公共汽车等对象,而不是在带有感兴趣对象的区域的基线比基线更好的行人来改善检测性能。我们使用线性编程自动化采样率分配,并显示出明显的时间分配,同时将雷达块大小减少2倍。我们还分析了二进制置换的对角线测量矩阵的雷达习得,这是硬件有效的,这是硬件有效的,并且显示其性能类似于高斯和二进制置换式的块状块对数。我们在牛津雷达数据集上的实验显示了有效地重建了感兴趣的对象,采样率为10%。最后,我们使用Nuscenes雷达和图像数据开发了一个基于变压器的2D对象检测网络。

The growing urban complexity demands an efficient algorithm to acquire and process various sensor information from autonomous vehicles. In this paper, we introduce an algorithm to utilize object detection results from the image to adaptively sample and acquire radar data using Compressed Sensing (CS). This novel algorithm is motivated by the hypothesis that with a limited sampling budget, allocating more sampling budget to areas with the object as opposed to a uniform sampling ultimately improves relevant object detection performance. We improve detection performance by dynamically allocating a lower sampling rate to objects such as buses than pedestrians leading to better reconstruction than baseline across areas with objects of interest. We automate the sampling rate allocation using linear programming and show significant time savings while reducing the radar block size by a factor of 2. We also analyze a Binary Permuted Diagonal measurement matrix for radar acquisition which is hardware-efficient and show its performance is similar to Gaussian and Binary Permuted Block Diagonal matrix. Our experiments on the Oxford radar dataset show an effective reconstruction of objects of interest with 10% sampling rate. Finally, we develop a transformer-based 2D object detection network using the NuScenes radar and image data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源