论文标题

COVID-19的复杂网络模型:人类行为,伪周期性解决方案和多个流行波浪

Complex network model for COVID-19: human behavior, pseudo-periodic solutions and multiple epidemic waves

论文作者

Silva, Cristiana J., Cantin, Guillaume, Cruz, Carla, Fonseca-Pinto, Rui, da Fonseca, Rui Passadouro, Santos, Estevao Soares dos, Torres, Delfim F. M.

论文摘要

我们提出了一个数学模型,用于在均匀混合非恒定种群中SARS-COV-2的传输动力学,并将其推广到一个模型,其中参数通过分段常数函数给出。这使我们能够对人类的行为和公共卫生政策的影响对共同受感染的人的曲线动态的影响进行建模。在证明了模型中没有恒定参数的无疾病和流行平衡点的存在和全球渐近稳定性之后,我们考虑了一个库奇问题的家族,具有分段持续的参数,并证明存在伪震荡的存在,从而存在无病平衡的邻居与该领域的无源平衡邻居之间的邻居,在生物学上,在生物学上是在生物学上均在生物学上。在Covid-19大流行的背景下,该伪周期溶液与流行波的出现有关。然后,为了捕获移动性在COVID-19流行病动力学中的影响,我们提出了一个基于COVID-19的六个不同区域的复杂网络。我们对复杂网络模型进行数值模拟,该模拟的目的是确定一种拓扑,该拓扑最小化活跃感染的个体的水平以及可能使感染水平恶化的拓扑存在。我们声称,这种方法是在当前大流行背景下具有巨大潜力的工具,可以应用于爆发的管理(从区域术语)中,也可以管理边界的开放/关闭。

We propose a mathematical model for the transmission dynamics of SARS-CoV-2 in a homogeneously mixing non constant population, and generalize it to a model where the parameters are given by piecewise constant functions. This allows us to model the human behavior and the impact of public health policies on the dynamics of the curve of active infected individuals during a COVID-19 epidemic outbreak. After proving the existence and global asymptotic stability of the disease-free and endemic equilibrium points of the model with constant parameters, we consider a family of Cauchy problems, with piecewise constant parameters, and prove the existence of pseudo-oscillations between a neighborhood of the disease-free equilibrium and a neighborhood of the endemic equilibrium, in a biologically feasible region. In the context of the COVID-19 pandemic, this pseudo-periodic solutions are related to the emergence of epidemic waves. Then, to capture the impact of mobility in the dynamics of COVID-19 epidemics, we propose a complex network with six distinct regions based on COVID-19 real data from Portugal. We perform numerical simulations for the complex network model, where the objective is to determine a topology that minimizes the level of active infected individuals and the existence of topologies that are likely to worsen the level of infection. We claim that this methodology is a tool with enormous potential in the current pandemic context, and can be applied in the management of outbreaks (in regional terms) but also to manage the opening/closing of borders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源