论文标题
互动小说游戏作为多段落阅读理解,并通过增强学习
Interactive Fiction Game Playing as Multi-Paragraph Reading Comprehension with Reinforcement Learning
论文作者
论文摘要
具有真实人为文字的自然语言文本的互动小说(如果)游戏为语言理解技术提供了新的自然评估。与以前具有合成文本的文本游戏相反,如果游戏对人类写入的文本描述提出挑战,对各种和复杂的游戏世界和语言生成挑战对动作命令生成的挑战较少,则来自受限制的组合空间的挑战。我们对如果游戏解决并将其重新构建为多通读阅读理解(MPRC)任务进行新颖的视角。我们的方法利用了上下文Query注意机制和MPRC中的结构化预测来有效地生成和评估动作输出,并应用了以对象为中心的历史观察检索策略来减轻文本观察的部分观察性。与所有以前的方法相比,对最近的IF基准(Jericho)的广泛实验证明了我们的方法明显的优势,该方法达到了高获胜率和低数据要求。我们的源代码可在以下网址获得:https://github.com/xiaoxiaoguo/rcdqn。
Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques. In contrast to previous text games with mostly synthetic texts, IF games pose language understanding challenges on the human-written textual descriptions of diverse and sophisticated game worlds and language generation challenges on the action command generation from less restricted combinatorial space. We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading Comprehension (MPRC) tasks. Our approaches utilize the context-query attention mechanisms and the structured prediction in MPRC to efficiently generate and evaluate action outputs and apply an object-centric historical observation retrieval strategy to mitigate the partial observability of the textual observations. Extensive experiments on the recent IF benchmark (Jericho) demonstrate clear advantages of our approaches achieving high winning rates and low data requirements compared to all previous approaches. Our source code is available at: https://github.com/XiaoxiaoGuo/rcdqn.