论文标题
使用修改后的继电器反馈测试和深度神经网络从起飞到实时识别的多轨道
Multirotors from Takeoff to Real-Time Full Identification Using the Modified Relay Feedback Test and Deep Neural Networks
论文作者
论文摘要
多趋势无人驾驶汽车(UAV)动力学的低成本实时识别是需求和新兴应用域的激增支持的一个积极研究领域。这种实时识别功能缩短了开发时间和成本,使无人机的技术更加易于访问,并实现了各种高级应用程序。在本文中,我们提出了一种新型的综合方法,称为DNN-MRFT,用于使用修改后的继电器反馈测试(MRFT)和深神经网络(DNN)对多旋转无人机进行实时识别和调整。主要贡献是开发将DNN-MRFT应用于高阶系统的广义框架。 DNN-MRFT的显着优势之一是确定过程增益的确切估计,这是由于使用描述函数方法近似诱饵系统响应而引起的不准确性。次要贡献是基于DNN-MRFT的广义控制器,该控制器具有未知动力学的无人机,并在飞行中标识了内部循环动力学。使用开发的框架,DNN-MRFT依次应用于无人机的外部翻译环,利用内部姿态回路获得的飞行内结果。 DNN-MRFT平均需要15秒钟,以获取多动型无人机动力学的全部知识,而无需进行任何进一步的调整或校准,无人机将能够通过垂直窗口,并准确遵循实现最新性能的轨迹。这种证明的识别的准确性,速度和鲁棒性在实时识别无人机的实时识别中推动了最新的限制。
Low cost real-time identification of multirotor unmanned aerial vehicle (UAV) dynamics is an active area of research supported by the surge in demand and emerging application domains. Such real-time identification capabilities shorten development time and cost, making UAVs' technology more accessible, and enable a wide variety of advanced applications. In this paper, we present a novel comprehensive approach, called DNN-MRFT, for real-time identification and tuning of multirotor UAVs using the Modified Relay Feedback Test (MRFT) and Deep Neural Networks (DNN). The main contribution is the development of a generalized framework for the application of DNN-MRFT to higher-order systems. One of the notable advantages of DNN-MRFT is the exact estimation of identified process gain, which mitigates the inaccuracies introduced due to the use of the describing function method in approximating the response of Lure's systems. A secondary contribution is a generalized controller based on DNN-MRFT that takes-off a UAV with unknown dynamics and identifies the inner loops dynamics in-flight. Using the developed framework, DNN-MRFT is sequentially applied to the outer translational loops of the UAV utilizing in-flight results obtained for the inner attitude loops. DNN-MRFT takes on average 15 seconds to get the full knowledge of multirotor UAV dynamics and without any further tuning or calibration the UAV would be able to pass through a vertical window, and accurately follow trajectories achieving state-of-the-art performance. Such demonstrated accuracy, speed, and robustness of identification pushes the limits of state-of-the-art in real-time identification of UAVs.